
SFIT Processing Environment

Ivan Ortega, James Hannigan, Eric Nussbaumer

SFIT4 workshop
Nov 4-6, 2019; Boulder, CO

Updated May, 2020

1

The sfit processing environment is the machinery/tools surrounding the sfit
core code. The ultimate goal is to:

• Create a directory structure to organize the output data
• Generate the necessary input files to run SFIT core code àPre-Processing
• Execute the SFIT core code and error analysis on output àProcessing
• Plotting results, HDF creation, analysis of retrievals à Post-Processing

Introduction

The majority of the processing environment is written in python!

2

We should use Python 3x going forward. Python 2 will be in EOL as of Jan 2020.

Model

Meteorological

data

refmaker.input

Local

Meteorological

Data

VMR

Profile DB

Input and Output flow for Core Processing Inputs

Processes

Outputs

Merge meteorological data

refmaker

Prepare ascii spectral file for

sfit4 input (t15asc)

pspec.f90

pspec.input

BNR

Files

Spectral

DB

Spectral fit

sfit4.f90

T15acs

File

reference.prf

File

sfit4.dtl
State

Vector

K, K
b
,

Matrices

FiKed

Spectra

Optional Output

Other

Outputs

sfit4.ctl

station.layers

X_Y.hbin

Pre-Processing

Processing

Post-Processing

3

<InputBaseDir>

<LOC>

<YYYYMMDD>

<LOC>

<GAS>
<x.gas>

<OutputBaseDir>

Input Data
• OPUS files
• House keeping

log files.
• Measurement

log file

Output Data
• Copy of ctl file
• T15asc
• Detail file
• State Vector file
• K.Out file
• Pbp file, etc

<Version>

<TimeStamp>

Input Directory
Structure

Output Directory
Structure

• <InputBaseDir> : Base directory for input file
structure

• <OutputBaseDir> : Base directory for output
file structure (can be same as <InputBaseDir>

• <LOC> : Three letter site location abbreviation

• <YYYYMMDD> : Year, month, day of
observation

• <GAS> : Primary gas of interest for retrieval

• <X.gas> : All inputs files & data for this gas

• <TimeStamp> : UTC time stamp of
observation HHMMSS.SS

• <Version> : User defined description of ctl file
used for processing

Directory structure of input and outputs that are employed within this environment.

e.g., (Input directory): /data/MLO/20191001

e.g., (output directory):
/data/MLO/ch4/Current/20181231.212342
/data/MLO/ch4/x.ch4/sfit4.ctl
Note: the above can be applied also to airborne
measurements

4

Pre-Processing (offline)
Pre-processing involves creating the spectral database file which has information regarding
a spectral observation, extracting relevant HITRAN line lists, and preparing ZPTW profiles
(altitude, pressure, temperature, water vapor) from other sources such as NCEP/ERA.

• Prepare spectral database
• Prepare ZPTW (altitude, pressure, temperature, and water vapor)
• Prepare WACCM to reference (every group might have this already, see wiki, or ask Jim)
• Prepare HITRAN hbin file
• Linelist (provided)
• Prepare sfit4.ctl file
• Prepare isotope.ctl file

• Prepare ils data?

5

Pre-Processing: Spectral database
There are several steps in creating the spectral database:

1. Creating the initial spectral database (info from OPUS)
2. Re-formatting the house keeping log files
3. Re-formatting the external station weather data
4. Appending the initial spectral database with house an external station weather data

Note that not all sites have house or external station weather data. Only step 1 is carried
out. However, they are highly recommended, especially pressure and temperature
values… and for airborne measurements GPS information

Do we create a database for all spectra recorded?
We recommend to do an initial quality check of the spectra, i.e., remove low quality spectra.

6

Pre-Processing : Initial quality check of opus files

We currently have two tools:

1. An IDL program (ckop.pro), which allows the user to look through each individual
spectra and discard or keep it.

2. A GUI written in python (ckopPy.py). This python script uses a python Class to
read opus format (nicely provided by Wolfgang Stremme, CCA-UNAM, Mexico). This
GUI calculates a SNR based on out of band noise (or any other band) and maximal
signal. Additionally, a proxy is created to integrate positive and negative values to
create a ratio as a second quality check for each spectra. Furthermore, we can plot
time series of SNR, and or log HK files (available upon request).

7

Input and Output Flow for spectral database

Inputs

Processes

Outputs

OPUS
Files

• Geometric calculations
• Constructs spectral db file
• Converts OPUS raw data to

.bnr format

ckopus.f90

.bnr Files

Timestamp

Spectral
DB

The python program mkSpecDB.py and the C program
ckopus.c are used to create the initial spectral database. The
ckopus.c program also the ability to convert OPUS files to
regular binary files. The spectral database file catalogs the
measurements and associates important meta-data with each.
Meta-data includes: time-stamp, solar zenith angle, etc.

There are two options to run mkSpecDB.py:

(1) With an input file: specDBInputFile.py à dates,
paths input/output, ckopus path/flags, bnr format.

(2) Command lines.

The initial spectral databases should be made for individual
years. The output files have the names spDB_loc_YYYY.dat; e.g.,
spDB_MLO_2019.dat

mkSpecDB.py

9

mkSpecDB.py
>> mkSpecDB.py -?

mkSpecDB.py [-i <File> -D <Directory> -s tab/mlo/fl0 -d 20180515 -?
• There are two options to run mkSpecDB.py:
• (1) mkSpecDB.py -i <File>. In this case the input file needs to be modified accordingly.
• (2) mkSpecDB.py -s tab/mlo/fl0 -d 20180515 -?
• -i : input File
• -D : only creates a processed folder list with opus files
• -s : Flag Must include location: e.g., mlo/tab/fl0
• -d <20180515> or <20180515_20180530> : Flag to specify input Dates. If not Date is

specified current date is used.
• -? : Show all flags’

Note: if input file is provided the location, dates, etc need to be modified accordingly
Note: if input file is not provided the location, dates, are taken from -s -d, and additional
hardcoded inputs are in mkSpecDB.py

Filename Site SBlock TOffs TStamp Date Time SNR N_Lat W_Lon Alt SAzm SZen ROE Dur Reso Apd FOV LWN HWN Flt MaxY MinY FLSCN EXSCN GFW GBW
s1ifml1a.0 MLO SNGC 0.0284 182459 20191001 18:24:59 0.0 19.54 155.57 3396.0 285.86 60.22 6377.6738 204.70 0.0035 BX 1.9139 0.998 4349.998 1 5.568e+00 -3.222e+00 2 2 1 1
s1ifml1a.1 MLO SNGC 0.0284 200925 20191001 20:09:25 0.0 19.54 155.57 3396.0 303.90 37.80 6368.6706 204.70 0.0035 BX 1.9139 0.998 4349.998 1 1.503e+01 -1.349e+01 2 2 1 1
s1ifml1a.2 MLO SNGC 0.0284 210348 20191001 21:03:48 0.0 19.54 155.57 3396.0 321.98 28.34 6356.9242 204.70 0.0035 BX 1.9139 0.998 4349.998 1 2.159e+01 -1.650e+01 2 2 1 1

Output example

10

List and description of database tags 11

What housekeeping info can be appended to the
ini3al database?

Any other important information can be appended, e.g., for mobile platforms, lat/lon/altitude, etc

12

Py programs to append data

Note: there is a previous step to read site specific format files. Modifications/edits need to be accomplished to
read properly different formats

>> appendSpecDB.py -?

appendSpecDB.py [-i <File> -D <Directory> -s tab/mlo/fl0 -y 2019 -?
There are two options to run appendSpecDB.py:
(1) appendSpecDB.py -i <File>. In this case the input file needs to be modified accordingly.
(2) appendSpecDB.py -s tab/mlo/fl0 -y 2018 -?
-i : input File
-s : Flag Must include location: e.g., mlo/tab/fl0
-y <YYYY> : Flag to specify year.
-? : Show all flags

Note: if input file is provided the location, dates, etc need to be modified accordingly
Note: if input file is not provided the location, dates, are taken from -s -d, and additional hardcoded inputs
are in appendSpecDB.py

13

Input and Output Flow for HITRAN hbin file

Inputs

Processes

Outputs

isotope.input

Reduced
Spectral

File
X_Y.hbin

Extract relevant spectral
lines from HITRAN

hbin.f90

sfit4.ctl

hbin.input

HITRAN
DB

sfit4Layer0.py

The HITRAN hbin file can be created calling
either hbin directly or with sfit4Layer0.

>> sfit4Layer0.py -?
sfit4Layer0.py -f <str> [-i <dir> [-b <dir/str> -?]

-i <dir> Data directory. Optional: default is current directory
-f <str> Run Flags: Necessary: h = hbin, p = pspec, s = sfit4, e =
error analysis, c = clean
-b <dir/str> Binary sfit directory. Optional: default is hard-
coded in main(). Also accepts v1, v2, etc.

v1:/data/ebaumer/Code/sfit-core-code/src/
v2:/data/tools/400/sfit-core/src/
v3:/Users/jamesw/FDP/sfit/400/sfit-core/src/
v4:/home/ebaumer/Code/sfit4/src/
v5:/Users/jamesw/FDP/sfit/400/src/src-irwg14-mp
v6:/data/ebaumer/Code/ sfit-core-code-1.0.5/src/

14

Input and Output Flow for ZPTW profiles

Temperature and pressure profiles are taken from NCEP nmc data. Available for NDACC sites:
>p://>p.cpc.ncep.noaa.gov/ndacc/ncep

Currently water vapor profiles are taken from NCEP (daily) I and ERA-Interim (6h) re-analysis data. Both NCEP and ERA-
Interim data are interpolated with WACCM data to reach 120km verPcal height.

We have a script that pulls raw data from the above sites every day under crontab.

15

ftp://ftp.cpc.ncep.noaa.gov/ndacc/ncep

Pressure and temperature profiles in the ZPT.nmc.120 files come from NCEP nmc data. The NCEP nmc data is
vertically interpolated with WACCM data to reach 120km. In the event that the NCEP NMC data is not available for a
particular day, the WACCM data is substituted.

NCEP I & ERA Interim Water Profiles

16

Note: ERA5 provides hourly estimates of a large number of atmospheric parameters and
might need to be considered in the near future.

Retrieved Water Profiles
- For all sites water vapor is retrieved when available. This water can be used as a prior for other retrievals and preferably
for NDACC archive dataset.

- The program retWaterPrf.py creates w-120.YYYYMMDD.HHMMSS.v99 for each retrieval. These files are stored in
the data directories.

- A daily average of these profiles can be created using the program retWaterPrfDaily.py. These daily averages
are also stored in the main data directories.

All profiles reside in the data directories (e.g., /data/MLO/20191001)

17

e.g., (Input directory): /data/MLO/20191001
OPUS files01

Overview: Steps for Pre-Processing

Information from OPUS files & house, external files
Create database02

Create WV reference profiles
Water Vapor profiles04

Reference profiles in input directory
ZPT Profiles03

Download opus
and ancillary files
(e., house data,
log files)

!Quality control!

House data?
external data?

Append info to
spectral database

yes

Download raw
NCEP and
ancillary data

Download NCEP and
ERA-I reanalysis.

Retrieve water
vapor and use as
prior for other gases

18

Mul$ple and single Processing
sfit4Layer0.py

Run hbin

Reduced Spectral File

Log file captures
errors/messages

throughout process

Run pspec Run sfit4

Input Files Input Files Input Files

T15asc File
Output Files

Layer0
The purpose of Layer0 is to run
a single retrieval.

The program sfit4Layer0.py
runs layer 0.

This program is called with
command line arguments.

There is no input file.

It can run hbin, pspec, or sfit4
independently.

Error analysis

Input Files

19

sfit4Layer1.py
Read Layer1 Input FileLayer1 Input File

Determine
• Station location
• Date range of interest
• List of .ctl files
• Spectral DB File

Loop through .ctl files
• Create list of primary retrieval

gases
• Determine spectral region

bounds

Spectral DB File

sfit4.ctl Files

Read Spectral DB File

Filter spectral DB data on:
• Within date range (from Layer 1

input file)?
• Within spectral bounds (from

.ctl file)?

Loop filtered spectral DB lines

Does input file
structure exist

Does output file
structure exist

Create folder structure

No

Yes

Create pspec.input file, run pspec &
create t15asc.4

Create refmake.input, run refmaker
& create reference.prf file

Run SFIT

sfit4.ctl

X_Y.hbin

station.layers Write output to
correct folder

No

Yes

Continue processing spectral
DB lines for one .ctl file

Continue processing .ctl files

Log file captures
errors/messages

throughout process

Layer1
The purpose of Layer1 is to
batch process multiple or many
retrievals.

Layer1 requires an
input file to specify retrieval
options such as date range,
input/output directory, etc.

The layer one processing
environment serves to do the
following:

• Create a directory structure to
organize the output data
• Generate the necessary input
files to run SFIT core code
• Execute the SFIT core code
• Conduct error analysis on output

20

>> sfit4Layer1.py -?

sfit4Layer1.py -i <file> -l -L0 -P <int> -d <20190101_20191231> -?
-i <file> : Flag to specify input file for Layer 1 processing. <file> is full path and

filename of input file
-l : Flag to create log files of processing. Path to write log files is specified in input

file
-L <0/1> : Flag to create output list file. Path to write list files is specified in input file
-P <int> : Pause run starting at run number <int>. <int> is an integer to start processing at
-d <20190101> or <20190101_20191231> : Date or Date range.

-d is optional and if used these dates will overwrite dates in input file for Layer 1
processing

-? : Show all flags

21

Tip: >> sfit4Layer1.py -i input.py –P1
Will create all needed files to test/debug with Layer 0.

#--
Name:
TAB_CO_input.cpy
#
Purpose:
This is the main input file for sfit4Layer1 processing. Contains directories, flags,
etc for processing Layer 1.

#---------
Location
#---------
loc = 'tab'

#------------------------------
Date Range of data to process
#------------------------------
Starting
iyear = 2018 # Year
imnth = 5 # Month
iday = 2 # Day

Ending
fyear = 2018 # Year
fmnth = 12 # Month
fday = 31 # Day

#------------
directories
#------------
BaseDirInput = '/data1/' # Input base directory
BaseDirOutput = '/data1/ebaumer/tab/co/' # Output base directory
binDir = '/data/ebaumer/Code/sfit-core-code/src/' # binary directory
#ilsDir = '/data/Campaign/TAB/ilsFiles/ils/lft11/' # ILS file(s). Options:
ilsDir = '' # ILS file(s). Options:

1) Use empty string ('') to indicate no ILS file!!
2) If string points to directory finds ils file closest in date (ils file name must be in format: *ilsYYYYMMDD.*)
3) If string points to specific file, this ils file is used for all data processing

#RatioDir = '/Users/ebaumer/Data/TestBed/fltrFiles/' # Directory for ratio files ** Currently NOT used **
logDirOutput = '/data1/ebaumer/tab/co/' # Directory to write log files and list files

How does input layer 1 look? 22

ctlList = [['/data1/ebaumer/tab/co/x.co/sfit4_v3.ctl','4','Current_B3'], ['/data1/ebaumer/tab/co/x.co/sfit4_v3.ctl','5','Current_B3']] #Filter 4 and 5

spcdbFile = '/data/Campaign/TAB/Spectral_DB/HRspDB_tab_2015_2018.dat' # Spectral DB File

WACCMfile = '/data/Campaign/TAB/waccm/WACCMref_V6.TAB' # WACCM profile to use
WACCMfolder = '/data/Campaign/TAB/waccm/co/' # WACCM folder with monthly profiles

sbCtlFile = '/data1/ebaumer/tab/co/x.co/sb_b3.ctl' # Control file for error analysis

#--------------------
Flags and Constants
#--------------------
waccmFlg = 1 # Flag to use WACCM profiles: 0 = Use single WACCM file defined above (WACCMfile)

1 = Use Monthly mean WACCM profiles in the folder defined above (WACCMfolder)

coaddFlg = 0 # Flag to indicate processing coadded spectra

ilsFlg = 1 # ILS file flag: 1 = Use ils file/directory specified in ilsDir string
0 = No ils is specified in input file. What is specified in ctl file is used

scnFlg = 0 # Flag to use measurement files with only forward or only backward scans
0 = Flag off - does not distinguish between forward and backward scans
1 = Only use files with FOWARD scans
2 = Only use files with BACKWARD scans

pspecFlg = 1 # 1 = run pspec, 0 = do not run pspec
refmkrFlg = 1 # 1 = run refmaker, 0 = do not run refmaker
sfitFlg = 1 # 1 = run sfit, 0 = do not run sfit
lstFlg = 1 # Flag to create list file. Output file which has meta data and a list of all directories processed
errFlg = 1 # 1 = run error analysis, 0 = do not run error analysis
zptFlg = 1 # 1 = Use new ZPT.nmc files, 0 = use old zpt-120 files

refMkrLvl = 0 # Version of reference maker to use.
0 = Use pre-existing zpt file. Concatonate with water and WACCM profiles
1 = Use pre-existing zpt file. Concatonate with water and WACCM profiles. Replace
surface pressure and temperature with values in database file. If those values
are not present, then default to original zpt file

23

wVer = 99 # Version of water profile to use.
<0 => Get the latest water version file
>=0 => Get user specified water version file. Latest file is taken if unable to find user specified

#------------------
Pspec input flags
#------------------
nBNRfiles = 1 # Number of BNR files to include in pspec input

outFlg = 1 # Pspec output flag
1 = output t15asc file (ascii)
2 = output bnr file (binary)
3 = output binary and ascii file

verbFlg = 2 # Pspec verbosity output flag
0 = no stdout from baseline correction or zero bnr or block output for plotting
1 = stdout from bc and zeroed bnr but no blockout
2 = stdout from zeroed bnr and blockout for plotting

nterpFlg = 1 # nterp - zero fill factor
= 0 - skip resample & resolution degradation (regardless of sfit4.ctl:band.n.max_opd value)
= 1 - minimally sample at opdmax
> 1 - interpolate nterp-1 points upon minimal sampled spacing
note: OPD is taken from sfit4.ctl:band.n.max_opd value

ratioFlg = 0 # rflag - ratio flag, to ratio the spectra with another low resolution spectral file (eg spectral envelope)
= 0 - no ratio
= 1 - ratio, file is a bnr of same type as fflag below, expected to be resolution of ~10cm-1

fileFlg = 0 # fflag - file open flag
= 0 for fortran unformatted file
= 1 for open as steam or binary or c-type file (gfortran uses stream)

zFlg = 0 # zflag - zero offset
= 0 no zero offset,
= 1 try w/ baselincorrect,
0 < z < 1 use this value,
= 2 use optimized 2nd polynomial fit to fully absorbed regions in 10m region

#---
filter bands and regions for calculating SNR
These values are used in creating the pspec
input file. Edit at your own risk
#---
fltrBndInputs = "1 \n\
f4 2300.000 2301.000 \n"

24

MLO (19 N)
WACC CO monthly profiles

Thule (76 N)

Do we need to include WACCM monthly profiles? 25

Outputs

Spectral fit

sfit4.f90

sfit4.dtl
State

Vector

K, Kb,

Matrices

Fitted

Spectra

Optional Output

Other

Outputs

sfit4.ctl sta>on.layers X_Y.hbin

Error analysis in sfit4Layer1.py

errFlg = 1

errAnalysis

Layer1Mods.py

Layer1Mods -- contains various modules used by sfit layer 1 processing. These modules include refMaker, t15ascPrep,

and error analysis.

sbDefaults.ctl

sb.ctl

26

Error analysis in sfit4Layer1.py
What has it changed in the latest sfit4 - pre/post processing python package distribution?

26

If running error analysis through Layer 1, the errFlg flags needs to be chose inside the input layer 1 file.
Additionally, the Kb needs to be True in the sfit4 control file.

(1) The traditional single sb.ctl for each gas is not implemented. Instead, a single sb control file is used for
all gases.

(2) For a harmonized IRWG error calculation, in particular spectroscopy uncertainties, there is a default
control file that the sfit4 development team has been created. We suggets to use this file.
this file can be found in the Layer1 folder (called sbDefaults.ctl)

(3) To run error calculation the path to this file needs to be defined in the sfit4.ctl file as
"file.in.sbdflt".

A few notes about near-real time analysis
(rapid delivery)

Water vapor

CO

sfit4Layer1.py

done?

Wait

No Yes

The whole process is run in a shell and most processes are carried out using a screen - software program that can be used to
multiplexes a physical console between several processes.

CH4O3

If done

Create HDF & upload files to NDACC

nrtHDFUpload.py

27

Final remarks

• Goal: put together a document that outlines the recommended
retrieval processing.

• If you have feedback/recommendations let us know.

28

