
SFIT Processing Environment

Ivan Ortega, James Hannigan, Eric Nussbaumer

SFIT4 workshop
Nov 4-6, 2019; Boulder, CO

1



The sfit processing environment is the machinery/tools surrounding the sfit core 
code. The ultimate goal is to:

• Create a directory structure to organize the output data
• Generate the necessary input files to run SFIT core code àPre-Processing
• Execute the SFIT core code and error analysis on output à Processing
• Plotting results, HDF creation, analysis of retrievals à Post-Processing

Introduction

The majority of the processing environment is written in python!

2

We should use Python 3x going forward. Python 2 will be in EOL as of Jan 2020.



Model 
Meteorological 

data

refmaker.input
Local 

Meteorological 
Data

VMR 
Profile DB

Input and Output flow for Core Processing Inputs

Processes

Outputs

Merge meteorological data

refmaker

Prepare ascii spectral file for 
sfit4 input (t15asc)

pspec.f90

pspec.input

BNR 
Files

Spectral 
DB

Spectral fit

sfit4.f90
T15acs

File
reference.prf

File

sfit4.dtl State 
Vector

K, Kb, 
Matrices

Fitted 
Spectra

Optional Output

Other 
Outputs

sfit4.ctl

station.layers

X_Y.hbin

Post-Processing



Post-Processing
The post-processing step involves plotting and analyzing the results of one or more retrievals. 
We have programs to show standard plots: fits, AKs, Jacobian, profiles, errors, summary outputs

There are no filtering options for a single retrieval; however, for a set of retrieval there are multiple parameters that one
can filter on such as RMS, DOFs, dates, etc. The program pltRet.py creates plots for a single retrieval and only 
requires command line arguments. Using the option pltRet.py -S would save plots into a pdf file. 

The program pltSet.py plots an entire set of retrievals and requires an input file (setInput.py). 

Both working with python 2.7 and 3x



>> pltRet.py -?

pltRet.py [-i <str> ]
-i <dir> Data directory. Optional: default is current 
working directory
-S Flag to save results in pltRet.pdf. Optional: 
default is False
# Purpose:
#   This program is use to plot individual results of sfit4
#           -- Jacobian Matrix
#           -- Fit retrievals/residuals in all micro-windows
#           -- Averaging Kernels (Matrix, vmr, and unitless)
#           -- Profiles of all gases in mixing ratios
#           -- Profile error are shown if error are calculated 
#           -- Cumulative sum of DOF profile
#           -- Summary Files, including error summary if present, are printed in terminal
#           -- Optional to save PDF file

Needed modules:
import dataOutClass
import matplotlib

Plot individual retrieval (single measurement)



Check out the pdf example provided

- These routines are meant as diagnostic tools.
- Easily expanded/add plots

- e.,g, LOS
- What else?

- Can easily be adapted for high quality figure for articles.



>> pltSet.py -?

pltSet.py [-i <str> -? ]
-i <file> : Run pltSet.py with specified input file
-? : Show all flags

Tip: a setinput.py file is located in every gas folder, so one can run 
this routine easily every time.

What are the important inputs in this routine?

Plot set of retrievals (multiple measurement)



Example of setinput.py
#----------------------------------------------------------------------------------------
# Name:
#        setInput.py
#
# Purpose:
#        This is the input file for pltSet.py
#
#----------------------------------------------------------------------------------------
loc = 'fl0'                  # Name of station location
gasName = 'co'                   # Name of gas
ver = 'Current_v3'           # Name of retrieval version to process
ctlF = 'sfit4_v3.ctl'            # Name of ctl file

#------
# Flags
#------
saveFlg = True                  # Flag to either save data to pdf file (saveFlg=True) or plot to screen (saveFlg=False)
errorFlg = True                  # Flag to process error data
fltrFlg = True                   # Flag to filter the data
byYrFlg = False                  # Flag to create plots for each individual year in date range
szaFlg = True                   # Flag to filter based on min and max SZA
dofFlg = True                   # Flag to filter based on min DOFs
pcNegFlg = True                   # Flag to filter profiles with negative partial columns



tcNegFlg = True                  # Flagsag to filter profiles with negative total columns
tcMMFlg = False                  # Flag to filter based on min and max total column amount
cnvrgFlg = True                   # Flag to filter profiles that did not converge
rmsFlg = True                   # Flag to filter based on max RMS
chiFlg = False     # Flag to filter based on max CHI_2_Y

maxRMS = 1.5     # Max Fit RMS to filter data. Data is filtered according to <= maxrms
minDOF = 0.9                    # Min DOFs for filtering
minSZA = 0.0                   # Min SZA for filtering
maxSZA = 90.0                   # Max SZA for filtering
maxCHI = 2.0                    # Max CHI_y_2 value
maxTC = 5.0E24                # Max Total column amount for filtering
minTC = 0.0                 # Min Total column amount for filtering
sclfct = 1.0E9                  # Scale factor to apply to vmr plots (ppmv=1.0E6, ppbv=1.0E9, etc)
sclfctName = 'ppbv'                 # Name of scale factor for labeling plots

#----------------------
# Date range to process
#----------------------
iyear = 2010
imnth = 1
iday = 1
fyear = 2019
fmnth = 12
fday = 31

Check out the pdf example provided



HDF creation
Hierarchical Data Format (HDF) is a set of file formats (HDF4, HDF5) designed to store 
and organize large amounts of data. 

Supported by many software, it also has a Java-based HDF Viewer (HDFView)

The current version, HDF5, differs significantly in design and API from the major legacy 
version HDF4.

The quest for a portable scientific data format began in 1987 by the Graphics Foundations 
Task Force (GFTF) at the National Center for Supercomputing Applications (NCSA). NSF 
grants received in 1990 and 1992 were important to the project. Around this time NASA 
investigated 15 different file formats for use in the Earth Observing System (EOS) project. 
After a two-year review process, HDF was selected as the standard data and information 
system (source: https://en.wikipedia.org/wiki/Hierarchical_Data_Format).

https://en.wikipedia.org/wiki/Hierarchical_Data_Format


ExternalDat HDFread HDFsave Layer0 Layer1 ModLib Plotting RefProfiles SpecDB

Base Folder

HDF creation

HDFCreate.pyInput_HDF.py

Input file with important  information regarding 

the location, gas, paths, dates, and filtering.

dataOutClass.py

Important file that 

contains classes to read 

outputs, perform filtering, 

creates plots… etc.

hdfBaseRetDat
hdfInitData
hdfCrtFile
h5py and pyhdf.SD



Diagram of HDF creation

Prepare HDF files
HDFCreate.pyInput Input_HDFCreate.py

Is there a hdfMeta file in the input

Import file 
(hdfMeta)

Import 
hdfsaveLOC.py

yes no

Needed modules (provided):
dataOutClass
hdfBaseRetDat
hdfInitData
hdfCrtFile
h5py and pyhdf.SD

The only needed file to 
be modified is the 
hdfMeta data (specific 
for each site)



#----------------------------------------------------------------------------------------
# Name:
#        input_HDFCreate.py
#
# Purpose:
#        This is the input file for HDFCreate.py
#
#----------------------------------------------------------------------------------------
loc = 'tab'                  # Name of station location
gasName = 'co'                 # Name of gas
ver = 'Current_B3_RD'        # Name of retrieval version to process
ctlF = 'sfit4_v3.ctl'            # Name of ctl file

#------
#Some Meta-data for hdf file (Global Attributes) --> More in hdfsave.py
#------
sfitVer = '0.9.4.4'
fileVer = '004'                # Updated October 2017
projectID = 'QA4ECV’

#------
#Python Flg: if True Use Python Interface; if False use IDL Interface
#------
pyFlg = True

yrlFlg = True                  # If True will create yearly files from Jan 1 to Dec 31; if False will create use single file from date range below

Example of input file for HDFCreate.py



spcDBFile = 'HRspDB_tab_RD.dat'        

statLyrFile = 'station.layers'  

#------

# If pyFlg is False the below IDL file is needed

#------

idlFname = ' '

#----------------------

# Date range

#----------------------

iyear = 2019

fyear = 2019

#------

# Flags

#------

errFlg = True

szaFlg = True                   # Flag to filter based on min and max SZA

dofFlg = True                   # Flag to filter based on min DOFs

pcNegFlg = True                   # Flag to filter profiles with negative partial columns

tcNegFlg = True                   # Flagsag to filter profiles with negative total columns

tcMMFlg = False                  # Flag to filter based on min and max total column amount

cnvrgFlg = True                   # Flag to filter profiles that did not converge

rmsFlg = True                   # Flag to filter based on max RMS

chiFlg = False                  # Flag to filter based on max CHI_2_Y

h2oFlg       = True                   # Flag to filter Negative Water Vapor Columns



maxRMS = 2.5                    # Max Fit RMS to filter data. Data is filtered according to <= maxrms
minDOF = 1.0                    # Min DOFs for filtering
minSZA = 0.0                    # Min SZA for filtering
maxSZA = 90.0                   # Max SZA for filtering
maxCHI = 2.0                    # Max CHI_y_2 value
maxTC = 5.0E24                 # Max Total column amount for filtering
minTC = 0.0                    # Min Total column amount for filtering

#------
# OPTIONAL (dQuality, 
#-----

dQuality = 'RD'    # Data_Source - Created for Rapid Delivery - dataStr['DATA_QUALITY’]
hdfMeta = 'hdfsaveFL0.py’

Example of file name: 
groundbased_ftir.o3_ncar001_thule_20191019t140535z_20191020t181338z_004



To include soon:
- Flag to create either hdf4 or hdf5 (this is implemented but 

default is hdf4)
- Read from the database either SAzm or NAzm; W_Lon or E_Lon
- Any other important meta data that should be included here?

Latest version: dates can be included in the command line and will 
overwrite the dates in the input file (handy for near real time)

>> HDFCreate.py –i input_HDFCreate.py – d 20191001_20191015



Plotting HDFs

One can plot a set of HDF files. The needed python files to plot HDF are in the HDFread
folder. 

The program pltHDF.py creates plots for a single or multiple years as specified in the input 
file. 

The program pltHDF.py requires an input file (input_HDFRead.py). The inputs and flags 
needed in input_HDFRead.py are self explanatory. To create plots using HDF 
files use the following syntax:

$ python pltHDF.py -i input_HDFRead.py



- Expect to make these tools available

- Any feedback/recommendations would be ok


