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ABSTRACT

SPIHT and SPECK encoders were originally developed by the im-
age processing community. They provide high image compression
ratios while keep the distortions low. We investigate the application
of SPIHT and SPECK on scientific data sets in this document.

1 INTRODUCTION

SPIHT [7] and SPECK [6] were originally proposed as 2D im-
age encoders. They aim to achieve high image compression ra-
tios while introduce a minimal amount of distortion. Empirically,
SPIHT, SPECK, and JPEG 2000 [6] share similar computational
complexity and accuracy on images.

Researchers later extended SPIHT and SPECK to encode three-
dimensional data [4, 8]. In this document, we report results from
our tests of SPIHT and SPECK on 3D scientific data sets.

2 STUuDY OVERVIEW

Our study evaluates the reconstruction accuracy of SPIHT and
SPECK on various data sets. We compare results from SPIHT
and SPECK with two other compression techniques: 1) Discrete
Wavelet Transform (DWT), and 2) simple truncation that casts a
double-precision floating point number to single-precision. More
specifically, we operate on single-precision floating point numbers
when comparing with DWT, and on double-precision floating point
numbers when comparing with truncation. The implementation of
SPIHT and SPECK are from QccPack [3], and the DWT implemen-
tations are from VAPOR [1].

DWTs can use different wavelet kernels to perform wavelet
transforms, and each wavelet kernel has its unique characteristics.
We specifically choose the CDF 9/7 kernel in this study, since re-
search by Li et al. [5] has shown that the CDF 9/7 kernel has most
accuracy when compressing scientific data sets with similar prop-
erties.

We note that the SPIHT and SPECK encoders also involve
wavelet transforms as a subroutine (the complete pipeline is wavelet
transform — quantization — SPIHT or SPECK encoding). Multi-
ple wavelet kernels can apply in this subroutine as well. To make
a fair comparison, we keep using the CDF 9/7 kernel in this sub-
routine of SPIHT and SPECK. Finally, the quantization subroutine
uses the default settings from QccPack.

Our evaluation criteria are Root Mean Square Error (RMSE) and
maximum point-wise difference (LMax). RMSE provides an aver-
aged error evaluation and LMax provides the worst case bound.

3 ENCODERS VS. WAVELETS

In this section, we compare the two encoders, SPIHT and SPECK,
with discrete wavelet transform. Our evaluation compares recon-
structed data with the raw data, and calculates the RMSE and LMax
on each compressed form. The compression ratios are: 4:1, 8:1,
16:1, and 32:1. We use three 5123 data sets, all from a turbulent-
flow simulation: the X component of velocity (VX), the X com-
ponent of vorticity (WX), and enstrophy. Figure 1 and 2 show the
RMSE and LMax evaluations respectively.

Both RMSE and LMax evaluations show more accurate results
from SPIHT and SPECK over wavelets. At the same time, the two
encoders, SPIHT and SPECK, exhibit similar results. The advan-
tage of SPIHT and SPECK varies on compression ratios: they are
two orders of magnitude better on 4:1, but less than one order of
magnitude better on 16:1 and 32:1. It is worth keep investigating

RMSE Evaluation

Comp. VAPOR SPIHT VAPOR/SPIHT SPECK VAPOR/SPECK
VX component, data range (-2.8, 2.8)
4to1 1.83E-03 1.33E-05 137.18 1.38E-05 132.33
8to1 4.14E-03 2.22E-04 18.64 2.28E-04 18.12
16to1 7.52E-03 1.07E-03 7.01 1.09E-03 6.92
32to1 1.28E-02 2.94E-03 4.37 3.00E-03 4.29
WX component, data range (-293, 332)
4to1 5.23E-01 3.71E-03 140.80 3.84E-03 136.24
8to1 1.10E+00 6.03E-02 18.19 6.20E-02 17.68
16to1 1.81E+00 2.96E-01 6.11 3.02E-01 5.99
32to1 2.72E+00 7.64E-01 3.56 7.77E-01 3.50
Enstrophy component, data range (0, 82842)
4to1 1.64E+01 1.46E-01 112.27 1.54E-01 106.06
8to1 3.76E+01 2.52E+00 14.88 2.62E+00 14.35
16to1 6.94E+01 1.13E+01 6.13 1.16E+01 6.00
32to1 1.12E+02 2.95E+01 3.81 2.96E+01 3.79

Figure 1: RMSE of three data sets, using various compression
settings. The three compression techniques are wavelets from
VAPOR, SPIHT, and SPECK. The improvements of SPIHT and
SPECK against VAPOR are shown comparatively in blue back-
ground.

Comp. VAPOR SPIHT VAPOR/SPIHT SPECK VAPOR/SPECK
VX component, data range (-2.8, 2.8)

4to1 1.49E-02 8.59E-05 173.33 8.50E-05 175.07

8to1 3.14E-02 1.48E-03 21.29 1.43E-03 21.94
16to1 6.02E-02  9.35E-03 6.44 9.33E-03 6.45
32to1 1.21E-01  2.38E-02 5.08 2.89E-02 4.19

WX component, data range (-293, 332)

4to1 4.05E+00 2.31E-02 175.28 2.38E-02 170.23

8to1 8.48E+00 3.88E-01 21.84 3.87E-01 21.92
16to1 1.42E+01 2.42E+00 5.88 2.40E+00 5.90
32to1 2.45E+01 5.22E+00 4.68 6.55E+00 3.74

Enstrophy component, data range (0, 82842)

4to1 1.51E+02 8.54E-01 176.28 1.11E+00 135.73

8to1 4.60E+02 2.13E+01 21.63 2.10E+01 21.95
16to1 9.25E+02 9.35E+01 9.90 9.37E+01 9.87
32to1 1.72E+03 3.35E+02 5.16 3.40E+02 5.07

LMax Evaluation

Figure 2: LMax of three data sets, using various compression
settings. The three compression techniques are wavelets from
VAPOR, SPIHT, and SPECK. The improvements of SPIHT and
SPECK against VAPOR are shown comparatively in blue back-
ground.
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LMax Evaluation

Comp.  Truncation SPIHT Rect. Double SPECK Rect. Double

2to1 2.38E-07 3.35E-08 3.35E-08
3to1 3.36E-08 3.36E-08
4to1 3.48E-08 3.49E-08
6to1 1.16E-07 1.15E-07
8to1 3.58E-07 3.73E-07

RMSE Evaluation

Comp.  Truncation SPIHT Rect. Double SPECK Rect. Double

2to1 5.26E-08 3.35E-08 3.35E-08
3to1 3.35E-08 3.35E-08
4to1 3.35E-08 3.35E-08
6to1 3.71E-08 3.74E-08
8to1 7.20E-08 7.40E-08

Figure 3: LMax and RMSE errors of truncation, SPIHT, and
SPECK encoders. Note that truncation only supports 2:1 compres-
sion ratio. The test data set is Marschner-Lobb data set at 2563
resolution, ranging from 7.6E-6 to 1.

what are the scenarios to apply the two encoders with most gain in
accuracy.

This test also shows how the data range affects accuracy. Our
narrowest data range is 5.6 and widest is 82842. Interestingly, these
three data sets show similar error rates at each compression level.
This is a little counter-intuitive to us because the quantization step
in SPIHT and SPECK is expected to introduce larger errors when
the data range is wide. It is worth keep investigating the effects of
data range when using SPIHT and SPECK.

4 ENCODERS VS. TRUNCATION

In this section, SPIHT and SPECK encode and decode double-
precision floating point numbers. Truncation casts a double-
precision number to single-precision (this is widely used when sav-
ing the simulation results onto disk). From the standpoint of com-
pression, truncation achieves a compression ratio of 2:1. Finally,
we always use the raw data in double-precision as the baseline to
compare the compressed data.

Figure 3 shows the comparison between the two encoders and
truncation using the Marschner-Lobb data set. This data set has a
resolution of 256° and data range (7.6E-6, 1). The results show
that both SPIHT and SPECK introduce less error at the 2:1 level,
the compression ratio that truncation achieves. Also, the two en-
coders reach comparable error rates with truncation at more aggres-
sive compression ratios, between 6:1 and 8:1 in this case. We are
especially pleased to see that SPIHT and SPECK have superior per-
formance than truncation even in terms of the LMax metric.

In a second test, we compare the SPECK encoder with trunca-
tion using a climate data set. This data set contains both 2D and
3D variables, and we especially tested 157 3D variables. These 3D
variables have dimensions 60 x 384 x 320. This data set is also spe-
cial in that it has missing values (e.g. some vertices in the mesh are
not valid). Since SPECK encoder is not able to handle missing val-
ues, we take a preprocessing step to replace all the missing values
in a variable with the average of all the valid values. This prepro-
cessing step was only for SPECK to encode and decode correctly,
and we calculated RMSE and LMax only on the valid data points.

We group test results from all 157 variables into four categories.
Each variable falls into one of the four categories based on how
many times SPECK performs better than truncation: 1) no improve-
ment (< 1x imprv.), 2) less than ten times improvement (< 10x
imprv.), 3) less than a hundred times improvement (< 100x im-
prv.), and 4) equal or greater than a hundred times improvement

LMax of 157 variables

< 1Ximprv. < 10X imprv. < 100X imprv. >= 100X imprv.
num. pct. num. pct. num. pct. num. pct.
0 0 25 15.92% 23 14.65% 109 69.43%
RMSE of 157 variables
< 1Ximprv. < 10X imprv. < 100X imprv. >= 100X imprv.
num. pct. num. pct. num. pct. num. pct.
9 573% 76  48.41% 42  26.75% 30 19.11%

Figure 4: The number and percentage of variables in each of
the four categories. Each category has variables that gain certain
amount of improvement by using SPECK over truncation. The up-
per figure shows results calculated based on LMax error metric, and
the bottom figure shows results calculated based on RMSE error
metric.

(>= 100x imprv.). Figure 4 summarizes these four categories.
Still, we consider the results from the LMax metric most impor-
tant and they show significant benefit of using SPECK instead of
truncation.

5 CALCULATION TIME

The SPECK and SPIHT encoders take significant amount of time
to perform encoding and decoding tasks. Since truncation takes al-
most no time to complete, I compared SPIHT and SPECK with
DWT. My simple and preliminary tests show that SPECK takes
13 x time to encode, and 21 x time to decode, when both SPECK
and DWT run in serial. SPIHT has similar calculation time.

6 ADDITIONAL PROPERTIES AND LIMITATIONS

Progressive Access. Both SPIHT and SPECK encode data into bit-
streams. When decoding, any prefix of the bit-stream can be used
to reconstruct the rectilinear mesh, and more incoming bits will
contribute to more accurate reconstructions.

Always Lossy. SPIHT and SPECK quantize data before encod-
ing, and de-quantize it after decoding. These steps make SPIHT
and SPECK always introduce some error, even when encoding to a
target size that is the same as the raw data. We can also observe it
from Figure 3: SPIHT and SPECK have almost the same error with
compression ratios 4:1, 3:1, and 2:1.

Power-of-two Constraint for SPIHT. The use of zerotrees in
SPIHT encoder introduces the constraint that each dimension of the
grid has to be a power of two. SPECK does not have this constraint,
because it is not based on zerotrees. More details on this constraint
could be found at [2].

7 CONCLUSION
SPIHT and SPECK are state-of-the-art encoders from the image
processing community, and their use on scientific data just starts.
Our preliminary experiments show both pros and cons of these en-
coders. Namely:

Pros:

e Up to two orders of magnitude more accurate than DWT when
performing lossy compression.

e Use 3x to4x less space than truncation when saving double-
precision floating point data to single-precision.

e Support progressive data access.

Cons:

e Computational intensive. Could be 20 x slower than DWT.

e Always introduce error. Only suit for lossy compression use
cases.

e SPIHT requires data dimensions be powers of two.
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