Linl&#&bz surface fluxes to

concentratiﬁ in the

o ammerﬁﬁaundary

= _—
b T
s

=Ty b
- -

- e

Stephan F.J. De Wekker (1)
B. Stephens(1), B. Sacks(2), S. Aulenbach(1),

T. Vukicevic(3), and D. Schimel(1) ‘l

(1) National Center for Atmospheric Research, Boulder, CO, USA

(2) University of Wisconsin, Madison, WI, USA
(3) University of Colorado, Boulder, CO, USA N CA R

1st iLEAPS conference
Boulder, 1/25/05



Atmospheric CO,
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CO, concentration measurements in the atmosphere
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Inverse modeling <— Atmospheric numerical model

'

Spatial distribution of surface CO, fluxes

16 different global transport models to
TransCom: make estimates of the carbon flux for 22
(Gurney et al, 2002) — global regions (continental scale).

For the temperate North American
region and for carbon dioxide data
> obtained from 1992-1996:

carbon uptake of 0.9 £ 0.6 Gt C yr-1

Transport errors in boundary layer
cause uncertainty

Global scale -> continental scale -> regional scale/meso-scale




GPP: Gross Primary Production: The amount of carbon
that is fixed’ (removed from the atmospheric pool of CO,)
by photosynthesis

GPP estimated from remote sensing

= need to develop techniques for constraining fluxes in
mountainous terrain, and to link those fluxes to underlying
processes

Key challenges in the mountains include:

Complex atmospheric boundary layer transport processes; e.g.,valley, slope flows,
venting processes

Observational, e.g. flux measurements, remote sensing
complex hydrology due to seasonal snow cover
Numerical modeling

-> Airborne Carbon in the Mountains Experiment (ACME)




ACME field campaign

May and July 2004

= NCAR C-130 aircraft 54 hrs, 16 flights
s Niwot Ridge towers
s Sodar
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ACME: Flight Project Execution

16 flights

-morning sampling of nocturnally respired CO2 in mountain valleys
-morning to afternoon lagrangian flux measurements
-regional measurements for assimilation into a high-resolution atmospheric model




morning sampling of nocturnally respired CO, in
mountain valleys
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Pooling of cold air, CO,, etc, at night

Ground-Based
Temperature
Inversion 4@

Whiteman (2000)




morning and afternoon lagrangian flights
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Boundary-layer budget of CO,
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Goal:

Goal:

Forward Atmospheric Modeling

-simulate atmospheric flows in ACME modeling domain+ capture complex terrain
effects with appropriate parameterizations and model setup parameters

-simulate horizontal and vertical distribution of CO, in mountainous terrain

How well does boundary layer budget method work over complex terrain?

Inverse Atmospheric Modeling

- estimate spatial and temporal pattern of surface CO, fluxes in mountainous terrain
using:
the adjoint of a mesoscale model

a particle dispersion model coupled to a mesoscale model (calculating backward
trajectories)




Numerical model: Regional Atmospheric Modeling System
(RAMS), LEAF2 for land-atmosphere exchange

1 domain, 277 x 247 grid points

horizontal grid spacing: 1.5 km

70 m vertical grid spacing near surface, increasing to 1000 m at
model top (~16 km)

24 hrs simulation (07/12/04 00 UTC to 07/13/04 00 UTC)
initialized with EDAS analysis data

lateral and top boundary nudging towards EDAS fields every 3
hours; no interior nudging

USGS topography and vegetation

Soil type: silty loam

included HRLDAS soil moisture

CO, flux (NEE) f(Rad, GPP, vegetation,elevation)




morning afternoon

MS Model evaluation

model

observations
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Fluxes from budget method using RAMS output

Idealized case Realistic case
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Mountains potential large sink of CO, but processes poorly
understood

Airborne Carbon in the Mountains Experiment: comprehensive
atmospheric and CO, data set

Forward modeling effort underwaY, good agreement with
observations; atmospheric variables, CO,

Potential for boundary layer budgeting techmques in complex

terrain but boundary layer processes in mountainous terrain
need to be taken into account (thermally-driven flows, venting
processes)

Future plans:

e Continue case study flight days

e Further investigation boundary-layer budget in complex terrain
e Inverse numerical modeling using RAMS adjoint




