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1. Introduction

The Community Land Model (CLM) solves a set of simultaneous equations once
per model time step n. The unknowns in this set of equations include near-surface
prognostic temperature and humidity variables, as well as soil and snow temperature and
moisture variables, all at time step n + 1.

The near-surface state responds to the conditions prescribed by an atmospheric
data set when the CLM operates in offline mode or simulated by an atmospheric general
circulation model (GCM) when the CLM operates in coupled mode. In the latter case,
CLM’s calculated sensible and latent heat fluxes are passed to the GCM to establish two-
way land-atmosphere interactions.

CLM versions prior to version 4 employ an iterative scheme of solving for near-
surface temperature and humidity variables (Oleson et al. 2004). After the iterative
scheme, CLM uses a matrix solution for the soil and snow temperature and moisture
equations.

Here we document the model update to an analytical method of solving for the
near-surface temperature and humidity variables using a matrix solver (Vidale & Stockli
2005). This update appears in CLM version 4. The analytical solution of this matrix of
equations simplifies large sections of CLM’s code and facilitates the implementation of
water isotope tracers in the model. The new solution also reduces sub-daily instability in
the heat fluxes resulting from the iterative solution at times.

The implementation of this new matrix leads to a small change in the
implementation of CLM’s existing matrix of soil and snow temperature and moisture

equations. In particular, the temperature of the top layer of soil (or snow if present) is



now solved by the new, prognostic canopy air space matrix. As a result the existing

matrix solving for soil and snow temperatures now solves for one less layer.

2. The Equations and their Physical Basis

This section includes subsections numbered by matrix row, where each row
corresponds to an equation and each equation includes an unknown. The complete set of
equations solves simultaneously for all the unknowns. An example of the matrix appears
in section 3. Symbols for all variables are consistent with Oleson et al. (2004).

Each equation is presented in three forms: (a) the physical form, (b) a series of
forms following algebraic transformations, and (c) the matrix coefficient form. The
algebraic transformations assume an “explicit coefficient/implicit temperature” numerical
scheme (Kalnay and Kanamitsu 1988). “Explicit coefficient” means that we use the
resistance terms (Ian, Faw, I'b) calculated at time step n, while “implicit temperature” means
that the variables on the right hand side (RHS) of the equations are from time step n + 1.

In the following subsections we define sensible heat fluxes from the GCM’s
reference height, from the ground, and from the vegetation to the height of the canopy air

space (Oleson et al. 2004):

atm

H =_pathp (g _Ts)

r‘ah
C
R e U (Eq. A)
ah’
L+S
Hv = _patmcp :_ (Ts _Tv)

b

We also define the corresponding latent heat fluxes (Oleson et al. 2004):



A
AE = _M(qatm - qs)

raw
A
}“Eg - p;tm (qs - qg) (Eq. B)
aw’
L + S fd Lsun Lsha
AE, =—p, A9 f + + —ql
vV patm { wet rb L (rb + rssun rb + r_ssha ]}(qs qsat)

AE, equals the sum of transpiration, AE,, and canopy evaporation, AE,":

f sun sha
AE'=—p. 2 dry( = an T : sha j(qs - qST;t)
L in+r o+
L+S (F9.©
ﬂ’E\‘/N = _patmﬂ’fwet ( s q;r;t)
y
Furthermore, we define the following derivatives of AE; and AE,":
aﬂ'Eg - _ patmﬂ
aqs raw’
aiEg — patmﬂ’ dqg
oT, ry dT,
ST ’ (Eq. D)
OAE, L+S
P _patmﬂfwet
aqs rb
w T,
O, _ , gf LS 08
aT, r, dT,

The coefficients and variables included in Egs. A, B, C, and D are defined in the

subsection where they first appear.

2.1 Solving for T;

Eq. 1 solves for Ts (K), the canopy air space temperature. Eq. 1 states that the
change in Ts per time increment At (s) between time steps N and n + 1 is directly
proportional to the sum of sensible heat fluxes Hg, Hy, and H (W m?) (Vidale & Stockli

2005). These sensible heat fluxes are calculated respectively from the ground, the



vegetation, and the GCM’s reference height (Zaimn = 30 m above the ground) to the height
of the canopy air space (Zon + d, see Oleson et al. (2004)). The first two fluxes are
positive into and the third is positive away from the canopy air space:

AT,

c A_tsz Hg+1 + H\:1+l _ Hn+1 (Eq la)

S

where Cs is the heat capacity of the canopy air space equal to p,,,C Az, pam is the

density of atmospheric (moist) air (kg m™), and C, is the specific heat capacity of dry air
(J kg' K). Az is the greater of 4 m and the difference between the top and bottom
heights of the canopy. If Az tended to zero, Cs would tend to zero and the prognostic form
of Eq. 1a would reduce to the diagnostic expression used in CLM prior to version 4
(Vidale & Stockli 2005). Eq. 1a’ is shown as a reminder of an assumption that ceases to

be true in CLM version 4:

lim c, AATtS 0= H"™ =HM™ +H™ (Eq. 1a")

c;—0
Starting from Eq. l1a, we carry the n + 1 sensible heat flux terms to the LHS, add
the corresponding n terms to both sides of the equation, expand all terms (following Eq.
A in Section 2), and rearrange the LHS by variable instead of by time step:

c ATS +Hn+1—Hg+l—H:+1:O
At

S

e AL ™ HY W T CHM L HY = H 4 H] - HY
At

S



C ATs _patmcp( n+1 Tsn+1)+ patmcp( n T )

atm

° At r, I,
C amC n n
+ pa;:h' p (Tsn+1 _Tgn+1)_ p;ah' p (Ts T, )
L+S L+S (Eq. Ib)
+ pathp (T e Tvnﬂ)_ pathp —(Tsn _Tvn)
b b
C C
_ _patherLbS(Tsn _Tvn)_ pa;mh’ p ( n —T ) patmh p ( " _Tsn)
C C mC n+ nn
ot )
C
_ part-m p (—I-gn+1 _Tgn)_patmcp L+S (—I-Vn+1 _-I-Vn)
ah’ b
C C
= _pathp LrLbS(Tsn _Tvn)_part_Lh'p(-rsn _Tgn)+ pa;,mh : ( art]m _T )

where Ty and T, are the ground and leaf temperatures (K), 6, is the potential

temperature (K) at the GCM’s reference height, L and S are the exposed leaf and stem
area index values (m” leaf or stem surface m™ ground), ra, is the aerodynamic resistance
to sensible heat transfer (s m"') between CLM’s canopy air space and the GCM’s
reference height, r, is the leaf boundary layer resistance (s m™), and ra’ is the
aerodynamic resistance to heat transfer (s m™) between the ground and the canopy air

space. Whether in offline or coupled mode, CLM assumes that a dataset will provide or

an AGCM will calculate 6. Therefore, CLM does not calculate ;' and assumes

instead that 8""' — "

i — G =0 to solve the matrix. The corresponding term in Eq. 1b drops

out.



Ts, Tg, and 6.

atm

are column level, while Ty, C;, and the resistance terms are plant

functional type (pft) level variables. Generalizing Eq. 1b to include multiple pfts per

column and substituting s with o, C Az gives:

i=1 (N

npft Az, L.+S.
z (Wt)J ZJ + 1 + J+ L+ 1 pathp (Tsn+1 _Tsn)
At () (R); )i

npft C
pam n+ n
=3 | (wty, Zae (T 1)
j=1 (rah’)j
npft L, +S;

_Z (Wt)J (rb)_ patmcp[(Tvn+l)j_(Tvn)j]:|

L. +S,
npft - pathp %)jj(-rsn - (Tvn)j)
= wt).
j=1 ( )J _patmcp (Tn_Tn)+ patmcp (gn _Tn)
(rah')j s g (rah)j atm s

(Eq. 1b")

where ] is the pft index ranging from 1 to npft (the number of pfts present in the column)

npft

and (wt); is the fraction of the column occupied by pft j, where Z(Wt) ;=1. CLM

j=1

includes bare ground in the same column as the vegetation and gives it a pft index. The

fraction of the column with bare ground has L; =0 and S; =0.

In matrix coefficient form, Eq. 1b’ becomes:



npft 1 LJ.+SJ. 1
JZ:'|:( )(2At (Fah) | (1) +(rah’)ijathp:|

S,
Cly =—(t), 520 for j=12,..mpt
(rb)]
npft
PamC
=S| (wt), P (Eq. Ic)
;I: J (ah)
| Li+S; (cn - |
npft _pathp Er) J(T _(Tv )])
b/j
F =S| (wt).
Ts Zl ( )] p C p C -
i _ Fam™p (—I-Sn _Tgn) 4+ Fam>~p atm™~ p (eaTm _-I-Sn)
(Fan) ()|

where CTIS is the matrix coefficient in row 1 that is multiplied by AT, C(T ), 1s multiplied
by A(T,); (forj=1,2, ..., npft), and CTIg is multiplied by AT, . A smoothing filter is
introduced by multiplying the time step, At, by a factor of 2. F; is the RHS term of Eq.

1.

2.2 Solving for gs

Eq. 2 solves for s, the specific humidity (kg water vapor kg™ air) of the canopy
air space. Eq. 2 states that the change in ¢s with respect to time is directly proportional to
the sum of latent heat fluxes AEg, AE,, and AE (W m?) (Vidale & Stockli 2005). These
latent heat fluxes are calculated respectively from the ground, the vegetation, and the
GCM'’s reference height (Zaimw = Zamn (Oleson et al. 2004)) to the canopy air space height
(Zow + d =Zon + d (Oleson et al. 2004)) The first two fluxes are positive into and the third

is positive away from the canopy air space:

patmﬂAZ% = JEI + JEM - AE™ (Eq. 2a)



where 4 (J kg') represents the latent heat of sublimation in AE, when the water content

of the top soil/snow layer consists of all ice and no liquid; A represents the latent heat of
vaporization in all other cases; A converts the units of Eq. 2a from water vapor flux units
(kg m? s™) to energy flux units (W m?). Other terms in Eq. 2a have been defined
previously.

If Az tended to zero, the prognostic form of Eq. 2a would reduce to the diagnostic
expression used in CLM prior to version 4 (not shown, but for an example see Eq. 1a’ in
section 2.1).

Next we carry the n + 1 latent heat flux terms to the LHS, add the corresponding n
terms to both sides of the equation, expand all terms (refer to Eq. B in Section 2), and

rearrange by variable instead of by time step:

P ANZ % +AE™ —JEM - 2EM =0

AQ
ANZ —=
Patm At

+AE™ —AE" - AE]" + AE] — AE" + AE) = AE) + AE] — AE"

itz 2 —p;‘;"‘ﬂ(qa”;i —q;‘“)+p;‘;mﬂ(q2tm —q2)+p§;mi( vt g ) Pan (gn _gn)

At aw aw aw Faw
+patm/1{ fo ™ ; >+ f"L'y (rb tr - ihrh J}( g
B NI
e e e L
—%“f(qé‘ —q;‘)+%mf(q2tm -a7)



f sun sha
patmﬂ”{£+i+ fwet L+S + dry( L sun - j+i}(qg+l _q:)

+
At T, I Lic+r r+r™) r,
L + S fdr LSLIn LSha Tn+1 Tn
- patmﬂ’{ fwet rb + Ly [rb 4 rsun + rb + rsha )}(qsét - qs;t)
al m/1 n+ n al m/I n+ n
_L(qam: _qatm)_pt—(qg 1 _qg) (Eq 2b)
raw raw'
L + S fd Lsun Lsha N
—_ A f + ry + n_~T
patm { wet rb L [rb + rssun rb + rssha (qS qsat)
al m/l n n al m/l n n
_pr; (qs - qg )+ prt (qatm - qs )
aw aw

where fyer is the wetted fraction of the canopy (leaves and stems) and fqry is the fraction of
leaves that are dry and able to photosynthesize (fwet and fgry are defined mathematically in
Oleson et al. (2004) and fgy # 1 - fuer in general). When the soil moisture function that

limits transpiration, & (Oleson et al. 2004), drops to 1 x 107'° or less, fary reduces to 0.

Lsha

When dew is present, fgry equals 0 and fye equals 1. L™ and L™ are the sunlit and shaded

a

components of L (m* m?), r*" and r™ are the sunlit and shaded stomatal resistances (s

m’™"), raw is the acrodynamic resistance to water vapor transfer (s m') between the canopy
air space and the GCM’s reference height, Iy, is the aerodynamic resistance to water
vapor transfer (s m") between the ground and the canopy air space, Qg 1s the specific
humidity (kg kg™') at the ground, and gy, is the saturated specific humidity (kg kg™) at

n+l

temperature T,. CLM assumes that a dataset or an AGCM will provide the value of q_, .

n+l
atm

n+1
atm

Therefore, CLM does not calculate q,, and assumes instead that q Oam = 0 to solve

the matrix, so the corresponding term in Eq. 2b drops out.



T -|—n+1 Tn
dqsat _ Osat — Osat

e T where g, is the saturated specific humidity at

Assuming that

d Ts
S _ a% given that q, = aqy?,, where qq is the

temperature T, and assuming that
dT, dT,

specific humidity at the ground as a function of the saturated specific humidity at the

ground (section 5.2 of Oleson et al. (2004)), we substitute the terms qg“ —-gy and
Oy — 0oy to get Eq. 2b"
f sun sha
patmﬂ’ E—i_Lﬂ_fwet L+S+ 2 - sun+ - sha +L ( :+l_q:)
At T, I L \r+r I+, [
T, f sun sha
_patmﬂ’ dqsat fwet L+S + a = sun + - sha (Tanrl _Tvn)
dT, r, L {rn+r, I+,
Lo dqg n+l n ,
= (T T Eqg. 2b
At (Eq. 20)
L + S fd Lsun Lsha N
=7 | +— + " g
patm { wet rb L (rb + rssun rb + rssha (qS qsat)
mﬂ’ n n m/l n n
_ Pat (qs —q )+ Pat (qatm —q )
r-aV\/ raw

Ty, Os, and Qawm, are column level, while Ty and the resistance terms are pft level

variables. Generalizing Eq. 2b’ to include multiple pfts per column gives:

10



—q")

[Ty, -, ]

sha
LJ'

h
() + ("

I Az, L+S, ]
L T AR Al
% wh) 1 At (raw)j (raw)j (rb)j ( il
WU Do sun sha 0,
& ] t N ( fdry)j LJ N LJh
_ L L0+, ), +™), )|
i (f.0), L, +S,
npft dqgt), et (r )
_Z (Wt)Jpatm sun sha
j=l dG-V)J n ( fdry)j L] + LJ
_ L L), + (), (1), + (5,
npft_ d
= oty Lant o o _72)
| "), T,
:anﬂ: (W), : (b) L, (rb)j+(rssun)j
=1 patm n patm n
qs q am — Us

In matrix coefficient form, Eq. 2b" becomes:

e

(Eq.2b")

(T
s qsat

for j=12,...,npft

sha
LJ'

(Eq.2¢)

Az, S
2—AJ+L+ 1 +(fwet)j Al
5 npft t (raw)j (raV\/)J (rb)l
Cqs =Z (Wt)jpatmﬂ“ sun sha
= " (fdry)j Lj + Lj
_ L L)+ @) +E™), )] |
(f), L; +S;
| ),
(T) = (Wt) patm d(T) (f ) [un LSha
v/j " dry/ j
] [<rb>,-+<r:“"> <rb>+<r5“a>j
npft d
2 patmﬂ qg
=— (wt), —2r——~
“ %“{ N () de
L+S, (f),( L@
g | P {(fwe‘)l W, L ]((r)-f(r“‘“)-
Fo, = 2| (wb), e
j=1 patm n patm n
qs q am — Us
(aw) ( g) ( ) ( t )

11
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where C(i is the matrix coefficient in row 2 that is multiplied by Aq,, C

1), 1s multiplied

by A(T,);, and CT2g is multiplied by AT, . A smoothing filter is introduced by multiplying
the time step, At, by a factor of 2. F, is the RHS term of Eq. 2. Although A could cancel

out of all the terms in Eq. 2 as latent heat of vaporization, A could also represent the latent

heat of sublimation in CTZg if the top soil/snow layer’s moisture were all ice. Therefore,

we keep A in all the terms of Eq. 2.
Eq. D in the introductory part of Section 2 defines the terms

0AE, OAE, OIE"
o9, = oT. ’ oq

s g

and OAE,
oT,

S \'

, all of which appear in expanded form in the LHS of Eq.

2

2¢. These terms represent the rate of change of AE, or AE;" with respect to gs or T. We

focus on these four terms in particular because we need to make sure that:

aﬂ’Eg _ patmﬂ < aﬂ'wliq,snlﬂ

oo, fy  AQ™

a/IEQ — patm/ﬁt dqg < a/lwliq,snlﬂ

o, r, dT, AT

(Eq. 2¢")

0AE; L+S _ adW,,
A _patm/u:wet < A —

aqs I’b Aqs

w T,
alEV = Af L_-l_s_dqsat < aﬂ“wcan

aT p atm wet rb dTV - ATvmax

where « is the “security constant” equal to 0.75 (Vidale & Stockli 2005), Wiigsni+1 is the
liquid water in the top soil or snow (if present) layer (kg m™), Wean is the amount of water

on the canopy per unit area of ground (kg m?), and AT,™ 1is the maximum allowed T,

increment in a time step equal to 3K. Finally Aq™ =~ Ae;‘“‘xi (Iribarne & Godson

atm

12



1989) where Pam, is the atmospheric pressure (Pa), ¢ is the ratio of the molecular weights

max
S

of water and dry air equal to 0.622, and Ae!™ is the maximum allowed vapor pressure

increment in a time step equal to 0.05 Pa. The limits in Eq. 2¢" ensure that evaporation
from the canopy and ground do not exceed the water available on the canopy and in the
top soil/snow layer. A corresponding limit could be applied to transpiration, but this
flux’s coefficient fye already responds to the soil moisture function that limits

transpiration, /.

2.3 Solving for T,
Eq. 3 states that vegetation temperature, Ty (K), changes with time as a function of
the net energy available to the vegetation (W m™), accounting for radiation and heat flux

terms, as well as for changes in the vegetation’s net longwave radiation. The radiation
terms include the vegetation-absorbed net solar, §V (positive into vegetation), and net
longwave radiation, I:V (positive away from vegetation). The heat flux terms include the
sensible and latent heat fluxes, H, and AE, (positive away from vegetation). The change

in the vegetation’s net longwave radiation from time step n to n + 1 with respect to

temperature is given by —| AT 8, + 3% AT,8,, (positive away from vegetation).
9 |n Vin
AT, =0 = dL, dL,
C,—L=S"-L"—HM - AEM - = AT 5, -~ AT,S Eq. 3a
v At v I‘v v v dTg n g“veg dTV i v-veg ( q )

where ¢, (J) m*® K') is the heat capacity of the vegetation equal to

W, +C, W, , where Cjiq is the specific heat capacity of water (J kg' K,

lig" "l+s lig" "can »

(L+S)C

13



Wi, is the amount of water in leaves and stems set to 0.2 kg m™ leaf and stem area, Wean
is the amount of water on the canopy per unit area of ground (kg m™), and Oveg 18 a step
function equal to zero for L + S < 0.05 and equal to one otherwise.

As in previous sections, now we transform Eq. 3a to Eq. 3b. At this time we also

replace j—l‘v and 3—_'? with — 48\,890(Tg”)3 and 4[2 - &, (1 —&, )]5\,0'(TV")3 , respectively:
91n Vin

e AT hrt_pn g - g0 + 95 AT o + 95 AT = 80— [ Hy - A€

At ar,| ar,|
C n+ n L+3S n+ n+ L+3S n n
_V( v : _Tv )_pathp ( : Tv 1)+/0atmcp—(-|-s _Tv )
At [ [

i L+S fd Lsun Lsha ] et
— A f + ry n+l ATy
patm wet rb L (rb + rsun rb + rshaj ( S qsat )

B L + S fd Lsun Lsha 7 "
+p, Al f + 0 + " —qu
patm wet rb L ( r + r_sun r + rsha ] (q qsat )

oo i— oo lTr 6 (107 —T7)— e ot f o, (0 —T7)

— L + S L + S fd Lsun Lsha .
=3g" + "1 )+ A T 4 "
v Lv patm p rb ( ) Patm |: wet rb L [rb + r.sun rb + r.sha ]}(qs qsat)

atm ™~ p
b b

Z—Vt+4[2—gv(1—eg )]sva(TV”)sd,eg + PanCo L:—S}( B —Tv”)—p C L:S( N —TS”)

L+S fd Lsun Lsha ] .

+pund| f 3 + A

patm I wet rb L (rb + rssun rb + I’Sha j_ (qsat qsat)

B L + S fd Lsun Lsha 7
A f + "_qp Eq.3b

patm wet rb L [rb + I,sun rb + rsha _( N qS ) ( q )
—45,8,0(T7 ) 8,0, (T =T7)

— — L + S L + S fd Lsun Lsha .
=S" "+ p, C.—(T" =T )+ p, A f + -2 + " _ql

v patm p rb ( S v ) patm |: wet rb L (r +r5un r +rsha (qS qsat)
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where & and g are the vegetation and ground emissivities, and o is the Stefan-Boltzmann

constant (W m™~ K™¥).

T,
As done in Eq. 2b, we next substitute g7 —ql with %(T\,”+l —TV”):

v

|:Z_Vt " 4[2 oo (1 B &‘g )]SVU(TVn )35veg T pathp is

b

T, f sun sha
e O = |

+
v I, I+ I I+
] g S S LU (@ ~a) (Eq.3b")
Patm wet rb L rb + I,Ssun rb + rSsha s s q.

- pathp —( s Tsn )_ 4"6"v‘c"ga(-|-gn )3 5veg (T9n+1 - Tgn)

— — L+S L+S fd Lsun Lsha .
=S" "+ p, Co———(T"=T" )+ p, Al f - + " qu
v Lv Patm™ p ( s v ) Patm |: wet r, L (rb N I,Ssun I+ r.sha jj|(q5 qsat)

S

Ts, Qs, and Tq are column level, while T, and the resistance terms are pft level

variables. Generalizing Eq. 3b’ to include multiple pfts per column gives:

[% +4[2 -(&); (1 — &y )kgv)j U(Tvn )j (Oueg) * PanC %)JJ

dq(TZ)j L +S;  (fay); szun szha ] n+l n
tm/1 - fwet j sun sha v i Vv /j
e mm% )mn+Lj&mﬂanVuﬂnx ;-0

L.+S. (f,). L L
_patmﬂ’|:(fwet)j it J+( dry)J( j " j H( 2+1_q:)

(rb)j LJ- (rb)j +(rssun)j (rb)j +(rSSha)j
L *S, n n ny n+ n "
—pathpﬁ(Ts )46, 00 (1) ] (0, (T3 T4 (Eq.3b")
]
(81, — (D), + punCy i -1y )
_( v)j_(Lv)j+patm p~ .~ \Us _(Tv)j

(%),

Li+S;  (fy); L LT "
+%4m@' H‘W{ St ’)ﬂ@—gﬂ
]

(n), L L)+, (), + (™

15



forj=1, 2, ..., npft. There are as many equations solving for T, as pfts in the soil column.
For bare ground, all terms in this equation reduce to zero and the equation is omitted
from the matrix.

In matrix coefficient form, Eq. 3b” becomes:

L L. +S.
CTi : :_patmcp Er) :
b/j

. L. +S. f . Lsun Ls_ha
C(iﬂ :_patmi{( fwet)i J ks ( d"y)l ( J + J j}

(1) L, ((%); +(rssun)j (1) +(r55ha)j
24 =(Cv)j 4y — (1= AT V(s _ C Li+sj Ea. 3
(Tv)j 2At + [ (gv)J( 89 )kgv)JG( v )31( veg)J +patm p (rb)j ( q C)

PR <l PPN T €% 1Y B~ A ~
atm d(Tv)j B (rb)j LJ— (rb)j+(rssun)j (I’b)j+(l’:ha)j

Cil =~4(8,),,0(1] f (),

npft

. . Li+S, ., "
=81, = (), + punC, ——L (TN = (1))
(1),

Li+S, (fg); L L .
+ patmﬂ’[( fwet)j J L+ ( dry)] ( J + J ) ]}(qsn - qg; )])
i

(%) Ly () + (™) () +(™

F

(Ty);

j=1

forj=1,2, ..., npft. CTZ:j is the matrix coefficient in row 2 + j that is multiplied by AT,
C.'l is multiplied by Aq,, Cf) is multiplied by A(T,);, and C7*' is multiplied by
AT, . A smoothing filter is introduced by multiplying the time step, At, by a factor of 2.
F(TV)J_ is the RHS term of Eq. 3. The limits in Eq. 2¢’ also apply to Eq. 3c so as to ensure

that evaporation from the canopy cannot exceed the water available on the canopy.
The matrix solves for (Ty); for all the pfts present in a soil column. To continue
numbering the subsections of section 2 so that they correspond to matrix row numbers,

we assume here the absence of bare ground and the presence of one pft (npft = 1).
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Therefore, this section (2.3) discussed matrix row 3 and the following section (2.4) will

discuss matrix row 4.

2.4 Solving for Ty
In CLM, ground properties correspond to properties of the soil or snow layer that

is in contact with the atmosphere. Eq. 4 solves for Ty, the ground temperature (K), stating

AT
that Ttg is a function of the net energy available to the top soil/snow layer (W m?). As

in Eq. 3, net energy includes radiation and heat flux terms, as well as changes in net

longwave radiation at the ground. The radiation terms include ground-absorbed net solar,
S, (positive into the top soil/snow layer), and net longwave radiation, L, (positive away
from top soil/snow layer). The heat flux terms include sensible, latent, and soil/snow heat

fluxes, H,, 1E,, and Fj.sn (positive away from top soil/snow layer). Fj.sn, the lower

boundary condition of this matrix, becomes the upper boundary condition of the
soil/snow temperature matrix later in the same time step, and Oleson et al. (2004) refer to

this flux as G. The ground’s net longwave radiation changes with respect to temperature

dL dL
as ——*| AT, +——* AT, (positive away from top soil/snow layer).
dT, dT,
c AZ ATg §n In H n+l /IE n+l F n+l dl:g AT dl:g A-l- (E 4 )
l+snl S &ix =9y ~ kg My T g Tlssnl g v q.4a
dT, | dT, |

where Ciisn (J m™ K) is the volumetric heat capacity of the top soil/snow layer (index
1+snl) and snl is the number of snow layers ranging from 0 to —5. With no snow the

index for the top soil layer is 1, while with five layers of snow the index for the top snow
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layer is —4. Azj= (m) is the top soil/snow layer thickness (Eq. 6.29 in Oleson et al. (2004))
indexed differently to indicate a numerical adjustment particular to the top layer. This
adjustment intends to lower the heat capacity of the top layer to justify clm’s assumption
that Tg and Ty, the ground and top layer temperatures are one and the same.

Transformations similar to the ones used in sections 2.2 and 2.3 lead from Eq. 4a

are replaced with 4890'(Tg")3 and —4s,¢,0, G(T )3,

v¢g®veg

dL
to Eq. 4b. Here —>
dT

and —
ol dT

'

n

d
respectively.  Also qg“—qg is replaced with %(T;”—Tg”), assuming that
g

d To
&:a% as in Eq. 2b’. Note that Tj.sn is known for time step n because the

g g9

soil/snow temperature matrix is solved separately from the prognostic canopy air space

matrix later in the same time step. Therefore, F"! is defined as

1+snl

A
B Z |_Zh 1+an|J (-I- n+l _Tzrl.sm)'

2+snl 1+snl

di,
Az, —4 44

1+snl At dTg

dL
AT, +—
dT,

v

AT,

\

C

n n

— =n

+H - HD + BN - 2ED R R, = ST — JE] -

I+snl l+sn| 1+sn|

1+sn|

.ol )27 T0) oo )

_ ,Oatmcp (Tsn+1 _Tgn+1)+ patmcp (-I-Sn _-I-gn) patm ( ;Hl qSH) patm (qs _qg)
rah’ rah' f J

aw’ aw’
Z’[Zh,Hsnl ] (-I- n+1 T n ) Z[Zh,lﬂnl ] (T T n )
- — 24snl 2+snl
Zyisnl ~ Lissnl Zyisnt ~ Lol
. C Az
— Sg B r; + patm p (-I-Sn _Tg ) patm (qs q ) [ h 1+sn|] (Tgn Tzrlrsm)
rah' r-aw' Z2+sn| Z1+sn|
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AT amC n Alz +sn n+ n
HSHIAZ Atg +|:prt-ah’ p e O-(T )3 B Z2+s[n| h’_l zlllnl :|(T9 | _TQ )

PGy (T 1) Pan Pan (01 _gr)4 Pan Pan (g1 _ )

S

e o Car (Eq. 4b)
—dge 0'( )3 Veg(T”*l “)

:§ 0 +pathp( n Tg) p;\tm (qs q ) Zﬁv[zh,_n;nl] (T Tzrlsnl)

rah’ aw’ 2+snl 1+snl

+sn A amC am/l dq n Alz ,1+sn n+ n
l Alt Z p;ah’ p ' prt ' ﬁ+4890(-r9 )3 ) 22+S|I:’1| h_l Zli]nl (Tg | _Tg )

aw g

—48\,6‘90(1- )5 (-I-n+1 Tn) pa;’LCp(Tan_Tn) p:.ltm (Sn+1_q:)

veg
ah' aw'

pathp (Tsn _Tg ) Patm (qs q ) ﬂ’[zh,Hsnl] (T Tzrlsm)

Fan Faw Zyysm — 2

_gn_gn
=S, Ly +
1+snl

where the coefficient A was defined in section 2.2, while Az, ] (W m™ K) is the

thermal conductivity at the interface between the top and second soil/snow layers, zh j+sni
(m) refers to the depth of that interface, while z;.sn and z,4sn (m) are the depths of the top
and second from the top soil/snow layers, respectively.

Ts, Qs, and Ty are column level, while T, and the resistance terms are pft level

variables. Generalizing Eq. 4b for multiple pfts per column gives:
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9

%[(Wt){ H—snlA + pathp patmﬂv dqg +4g (Tn)3 _M}}( n+l _Tn)
J 9

j=1 At (rah ) ( ) dT Zyisnl ~ Lisni
npft
—Zp:(Wt) 4¢,6 0( )(5veg) [(Tn”) -(T,); ]]
=
npft [ C npft
=3[y, 2o fron 1) S aty, Lo (e —qp) (Eq. 4b)
ISR (rah’)j j=1 ( avs/)
_ ) ) c -
Sg N Lg +M(Tsn _Tg ) patm (qs —0q )
o (rah’)j (raw )J
= >[(wt),
i=t n ﬂ“[zh,lﬁ-snl] ( n_n )
L Zyisnt ~ Ligsnl 2

In matrix coefficient form, Eq. 4b’ becomes:

npft_ C
C4 __ wt). Pam™p
e, () }
npft_ )
C4 - _ wt) . Pam
" Z( ! (rawol
4 npft .
C(Tv)j‘j ~(wt);4,6,0(T) ), (6,e0); for j=12,...npft
3 PanCo | Pam 99 /1[2m |]
1+sn| + p 4 [am” Sfatm”* T g +4¢ T _ 1+sn
zl:( ) { 2At (rah')J ( ) dT ( )3 Zy st~ Zigsnl
gn _|n pamC atm n
npft Sg g (rth ) 2 (T Tg ) (prt ) (qs qg)
Fr :z (wt), 3 . (Eq. 4¢)
j=1 n ﬂ[zh,nsnl] ( n_To )
2+snl
Zyesnt — Zigsni

where C{‘S is the matrix coefficient in row 4 that is multiplied by AT, C:S is multiplied
by Aq,, Cfmj is multiplied by A(T,);, and Cfg is multiplied by AT, . A smoothing filter
is introduced by multiplying the time step, At, by a factor of 2. FTg is the RHS term of
Eq. 4. The limits in Eq. 2¢" also apply to Eq. 4c to ensure that evaporation from the

ground cannot exceed the water available in the top soil/snow layer.
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Later in the same time step, a tridiagonal matrix solves for the soil and snow
temperatures of deeper layers (Oleson et al. 2004). Subsequently CLM updates the soil
and snow temperatures of all layers (including Tg) to account for the effect of soil/snow
water phase changes. In CLM versions prior to version 4, this temperature adjustment led
to an adjustment of the sensible and latent heat fluxes, which in CLM4 we will neglect
for simplicity. In every time step, we keep track of two Ty values: one which is consistent
with the state of the canopy air space and one which is adjusted for the soil/snow water

phase changes.

3. The Matrix

Using the LAPACK matrix solver DGESV, CLM solves the set of simultaneous
equations described in section 2 once per time step n for each column in a land grid cell.
A grid cell’s lake, wetland, glacier, urban, and soil fraction each occupies a separate land
unit, each with one column in the current version of CLM. The matrix was not
implemented in the lake and urban land units, so CLM uses the existing iterative method
there. The wetland and glacier land units are treated as bare ground for the purposes of
this matrix.

The unknowns in this set of equations include various near-surface prognostic
temperature and humidity variables for model time step n + 1: Canopy air space
temperature and humidity, Ts and ¢s, which represent the column’s canopy air space state,
Ty, the temperature of the top soil/snow layer, and (Ty);, the vegetation temperature

indexed by pft j, which remains undefined over bare ground.
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We write the equations in matrix form (A-Xx = B) for the sample case of one pft

and no bare ground present (npft = 1). With more pfts, the number of rows and columns
corresponding to Ty would equal the number of pfts, npft (minus one when bare ground is
present). With only bare ground present (npft = 1), the rows and columns corresponding

to Ty drop out of the matrix.

C-Il—s 0 C(ITV ) j C-ll—g ATS FTS
0 C, Ci, Cf AQ, F..
3 3 3 3 |X =

CTS Cqs C(Tv)j CTg A(TV)] F(Tv)j

Ci Ci Ci, Ci)|AT F

The matrix coefficients are indexed at top right by the row number (or equation)
that they belong to and at bottom right by the column (or prognostic variable) that they
correspond to. CLM adjusts the size of matrix A in every grid cell according to the actual
number of pfts. The matrix size can range from 3x3 for a column with no pfts (e.g.,
wetland, glacier, bare soil; npft equals 1 but L + S equals 0 in such columns) up to 7x7 for

a column with four non-bare ground pfts.

4. Steps Toward Implementation

A fortran routine based on SiB3 subroutine sibslv.F90 was written to fill the
coefficients of the matrix of section 3 with realistic data from one time step of a single-
point CLM simulation. The main routine calls a matrix solver (subroutine dgesv) and
writes the solution as though one CLM time step has passed.

The fortran routine was originally tested in one column with one pft and no snow:
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The heat capacities of vegetation and canopy air space were set to zero to mimic
CLM assumptions. The matrix solution appeared reasonable but values were
different from CLM output at the same time step.

Finite heat capacities were used for vegetation and canopy air space and the
results changed mainly above ground as expected.

A 2At smoothing filter was used in Eq. 1c to Eq. 4c following the approach found
in SiB3. The results changed mainly above ground because the smoothing was not
used below ground.

The routine was changed to accommodate multiple pfts. Ts and (s were made
column level variables. The results did not change when setting npft = 1.

Solving for two or more identical pfts (npft > 1) gave same answers for each of
the pfts as for the single pft in test #4.

Vegetation related variables were set to zero to test the matrix for the case of bare
ground. The results changed mainly above ground as expected.

The routine was generalized to accommodate snow. The results did not change
when snl was set to zero.

As this document was written, a few errors were found in the definitions of some
matrix coefficients, so answers changed. However, the new results look just as
reasonable as the old.

This new matrix solution will be linked to the CLM as a replacement to the
original iterative solution. In CLM the matrix dimensions will be determined
dynamically for variable numbers of pfts and snow layers to ensure maximum

computational efficiency. Extensive tests will be performed with the new and the
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old codes to demonstrate that the new solution works correctly. Some of the tests
described earlier in this section will be repeated. Also conservation tests for mass
and energy will be performed.

10. We decided to remove the equations solving for soil/snow temperatures other than
Tg.

11. Limit canopy and ground evaporation according to the water present on the

canopy and in the top soil/snow layer.

5. Necessary Code Changes
List subroutines that were removed, added, or changed. List corresponding
sections from Oleson et al. (2004) that become obsolete.
Apply the limits recommended by Vidale & Stockli (2005) (see Eq. B1)?
Change the tridiagonal soil/snow temperature matrix to solve for one less layer.
Talked to Retto (March 15™, 2006):
- He sent the code that includes the water and energy limits. These limits are applied
before solving the matrix.

- He offered to review this document. I suggested after we finish reviewing it ourselves.

6. To Do...

Add or just refer to Keith’s figures such as 4.1, 5.1, 5.2, 6.1?

Ian (?) suggested that we compile with ATLAS (?)
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