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We decompose turbulent flows into two orthogonal parts: a coherent, inhomogeneous, non-Gaussian
component and an incoherent, homogeneous, Gaussian component. The two components have
different probability distributions and different correlations, hence different scaling laws. This
separation into coherent vortices and incoherent background flow is done for each flow realization
before averaging the results and calculating the next time step. To perform this decomposition we
have developed a nonlinear scheme based on an objective threshold defined in terms of the wavelet
coefficients of the vorticity. Results illustrate the efficiency of this coherent vortex extraction
algorithm. As an example we show that in a 256 computation 0.7% of the modes correspond to the
coherent vortices responsible for 99.2% of the energy and 94% of the enstrophy. We also present a
detailed analysis of the nonlinear term, split into coherent and incoherent components, and compare
it with the classical separation, e.g., used for large eddy simulation, into large scale and small scale
components. We then propose a new method, called coherent vortex simulation (CVS), designed to
compute and model two-dimensional turbulent flows using the previous wavelet decomposition at
each time step. This method combines both deterministic and statistical approaches: (i) Since the
coherent vortices are out of statistical equilibrium, they are computed deterministically in a wavelet
basis which is remapped at each time step in order to follow their nonlinear motions. (ii) Since the
incoherent background flow is homogeneous and in statistical equilibrium, the classical theory of
homogeneous turbulence is valid there and we model statistically the effect of the incoherent
background on the coherent vortices. To illustrate the CVS method we apply it to compute a

two-dimensional turbulent mixing layer. © 1999 American Institute of Physics.

[S1070-6631(99)04608-5]

l. INTRODUCTION

In this article we introduce a new approach for comput-
ing turbulence which is based on the observation that turbu-
lent flows contain both an organized part (the coherent vor-
tices) and a random part (the incoherent background flow).
The direct computation of fully developed turbulent flows
involves such a large number of degrees of freedom that it is
out of reach for the present and near future. Therefore some
statistical modeling is needed to drastically reduce the com-
putational cost. The problem is difficult because the statisti-
cal structure of turbulence is not Gaussian, although most
statistical models assume simple Gaussian statistics. The ap-
proach we propose is to split the problem in two: (i) the
determinist computation of the non-Gaussian components of
the flow and (ii) the statistical modeling of the Gaussian
components (which can be done easily since they are com-
pletely characterized by their mean and variance). We
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present a wavelet-based method which performs such a sepa-
ration. The non-Gaussianity of turbulent fields results from
the nonlinear dynamics of Navier—Stokes equations, which
produces strong gradients and organized vortices. We then
check a posteriori that the non-Gaussian components actu-
ally correspond to the coherent vortices.

Of course this approach is only of interest if the Gauss-
ian part (to be modeled) is responsible for the vast majority
of degrees of freedom and if the coherent vortex part (to be
computed) contains a small number of degrees of freedom
which are responsible for most of the nonlinear term (and
hence the cascade). We have found this to be the case when
we apply our method to two-dimensional turbulence. Note
that, although we apply our method in two dimensions, it can
also be applied to three-dimensional flows. In fact, the dy-
namics of two- and three-dimensional turbulence may not be
as different as is usually assumed, since in two dimensions
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vorticity gradient stretching and palinstrophy production
plays a dynamical role similar to that of vortex stretching
and enstrophy production in three dimensions. Moreover
Biot—Savart’s law, Kelvin’s theorem, and Helmholtz’s theo-
rem are valid regardless of the dimension, and they form the
basis of our computational scheme, which is written using
the vorticity—velocity formulation of the Navier—Stokes
equations.

Coherent vortices are localized concentrations of vortic-
ity, tending to vortex spots in two dimensions and to vortex
tubes in three dimensions. They are produced by the nonlin-
ear dynamics of incompressible Navier—Stokes equations.
The main difference between two and three dimensions is
that vortices are much more stable in two dimensions due to
the lack of vortex stretching. The velocity associated with a
coherent vortex is less local than the vorticity, because of the
Biot—Savart kernel. Therefore, as soon as coherent vortices
are present in turbulent flows, one achieves higher compres-
sion by filtering the vorticity field rather than the velocity
field, since the vorticity field is more intermittent and hence
better suited for adaptive computation. This motivates the
choice of the vorticity—velocity formulation of Navier—
Stokes equations instead of the velocity—pressure formula-
tion.

In the case of two-dimensional flows, we have shown'
that the strain imposed by the coherent vortices on the back-
ground flow inhibits the development of nonlinear instabili-
ties and the formation of new vortices in the background.
This led us to conjecture that, for large Reynolds number
flows, the density of coherent vortices should be roughly
constant (and is probably quite small). If this conjecture is
verified, it will guarantee that the number of resolved modes
of our method will remain bounded for any Reynolds num-
ber. However, this inhibition is not present if coherent vor-
tices have not yet formed, which is the case in wall regions
for bounded flows, or during the early evolution of un-
bounded flows initialized with random conditions.

In this paper we propose a new way of computing and
modeling turbulence, called coherent vortex simulation
(CVS), which is based on the conjecture that coherent vorti-
ces are generic in incompressible turbulent flows, in two and
three dimensions. It assumes that only the degrees of free-
dom attached to the coherent vortices are deterministically
active and need to be computed exactly. In two dimensions
vortices correspond to the elliptical regions of the flow where
rotation dominates strain and thus are not well mixed. They
experience strain and mixing only during close encounters
with other vortices, which results in vorticity filament emis-
sion and vortex merging or tearing. However, these events
are too rare to allow the coherent vortices to reach a statis-
tical equilibrium state, and thus the central limit theorem
does not apply so that meaningful averages cannot be de-
fined. Therefore, one is forced to compute their evolution as
exactly as possible, in particular their shape and position. On
the other hand, we suppose that all remaining degrees of
freedom have reached a quasi-equilibrium state and therefore
can be modeled statistically, because they are attached to the
well-mixed background flow, which corresponds to hyper-
bolic regions where strain dominates rotation. Their averages
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are well defined, thanks to the central limit theorem which
remains valid as long as the coherent vortex strain inhibits
any nonlinear instability from developing in the incoherent
background flow.'

If one can guarantee that the background flow has a
Gaussian probability density function (PDF), its total statis-
tical effect can be calculated from its mean and variance. All
remaining components exhibit a non-Gaussian PDF and we
check that they do indeed correspond to the coherent vorti-
ces. In fact, we propose to define the incoherent background
flow as those components associated with a Gaussian PDF,
and the coherent vortices as all other remaining components.

The paper is organized as follows. In Sec. II we briefly
recall the essential features of wavelets and describe the al-
gorithm used to separate the Gaussian (incoherent back-
ground) and non-Gaussian (coherent vortex) parts of the
flow. We propose a new wavelet-based method to compute
turbulent flows (the coherent vortex simulation method),
which is presented in Sec. III. The results are discussed in
Sec. IV and the paper ends with some conclusions in Sec. V.

Il. COHERENT VORTEX EXTRACTION BASED ON
THEIR NON-GAUSSIANITY

A. Wavelet representation to study turbulent flows

Inspired by the work of Grossmann and Morlet,” we
have proposed using wavelets to study turbulent flows.>*
Wavelets are functions which are well localized in both
physical and spectral space. In addition, their smoothness
(which determines the number of times they can be differen-
tiated) and their number of vanishing moments (which deter-
mines the number of times they can be integrated) can be
controlled. They can efficiently represent data which is nei-
ther completely particle-like nor wave-like (e.g., multiscale
localized structures). Furthermore, fast wavelet algorithms
exist and wavelet bases are available for von Neumann or
Dirichlet boundary conditions.” The characteristics men-
tioned above mean that wavelets are suitable for detecting
and analyzing the coherent vortices that emerge out of ran-
dom Gaussian initial conditions, or are created in boundary
layers.

The shape of these vortices results from a competition
between the Biot—Savart kernel (used to compute to the non-
linear advection term of the Navier—Stokes equation) and the
heat kernel (used to compute the linear dissipation term). If
one considers initially a Gaussian random field, then the
Biot—Savart kernel selects the strongest local maxima
(namely the tails of the vorticity PDF which correspond to
the strongest singularities, in the sense of Holder?) and lo-
cally organizes the flow into vortices whose centers corre-
spond to these initial local maxima. As a result, there are also
small scales in the vortex cores, which we have shown using
two-dimensional ~ continuous  wavelet  analyses  of
two-dimensional®* and three-dimensional® turbulent flows.
Consequently the coherent vortices are multiscale structures,
which are excited all along the inertial range (i.e., from the
integral to the dissipative scales).

The Biot—Savart kernel is an integral operator (with 1/r
decay in dimension two). It is therefore global in physical
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space and couples all coefficients of a collocation (i.e., grid-
point) projection of the fields. Using a wavelet representation
this operator becomes increasingly localized at small scale,
due to the vanishing moments of the wavelet. The nonlinear
term of the Navier—Stokes equations (3) is optimally local-
ized in a grid-point projection, because the collocation pro-
jection commutes with the nonlinear operator. On the con-
trary, the nonlinear term is delocalized in a Fourier
projection where it becomes a convolution. It has been
shown’ that using wavelets one recovers the locality of the
nonlinear operator at small scales. Meneveau® has studied the
dynamics in space and scale of three-dimensional turbulent
flows, and the associated energy transfers, by projecting the
Navier—Stokes equations onto an orthogonal wavelet basis.

B. Classical vortex extraction methods

One needs a method to extract coherent vortices out of
turbulent flows, in order to compute their circulation, spatial
support, vorticity and velocity PDFs, and study their dynam-
ics. However, at present there is no consensus on the precise
definition of a coherent vortex. The only definition which
seems objective is a locally metastable state. In two dimen-
sions a coherent vortex can be unambiguously characterized
by a functional relation between the vorticity @ and the
streamfunction W in the form w=F(¥), where F is called
the coherence function.” One technique to extract coherent
vortices from two-dimensional turbulent flows would thus be
to plot the pointwise scatter plot of w versus ¥ and extract
the branches which can be fitted by some function F. The
points belonging to these branches would correspond to lo-
cations where the vorticity field w~ is coherent, while the
scattered points which do not belong to any branch would
correspond to locations in the incoherent background flow
o~ . In practice this method is not feasible because it re-
quires that the computation of F be performed in a frame of
reference moving with each coherent vortex.

Other techniques to extract coherent vortices are less ob-
jective than the one described above because they depend on
a threshold value which has to be defined a priori. The sim-
plest method is to choose a vorticity threshold, for instance
€c=Z"? with enstrophy Z= %[ w” dx, and retain as coherent
the regions where |w|> €., while the remainder forms the
background flow. The drawback of this clipping method is
that it does not preserve the smoothness of w, and both in-
coherent and coherent fields will contain spurious disconti-
nuities which will affect their time evolution and their energy
spectrum. To avoid this problem we suggest replacing the
grid-point representation by a wavelet representation, which
does not introduce discontinuities and therefore preserves the
spectral properties of the flow when we truncate in this
wavelet basis.

Since the wavelet transform is invertible, it is always
possible to select a subset of the coefficients and reconstruct
a filtered version of the field from them. Using this property,
we have proposed'’ using the continuous wavelet represen-
tation to extract coherent vortices by discarding all wavelet
coefficients outside the influence cones (i.e., the spatial sup-
port of the wavelets) attached to the local maxima of the
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vorticity field which correspond to the centers of coherent
structures.

We have also tried'""'? to use orthonormal bases made of
either wavelets, wavelet packets, or adaptive local cosines
(Malvar wavelets) to separate coherent vortices from back-
ground flow. We showed that the local cosine representation
does not compress the enstrophy as well as wavelets or
wavelet packets. First, it smoothes the coherent structures
and therefore loses enstrophy, and second, it introduces spu-
rious oscillations in the background, due to the loss of the
phase information attached to the weak coefficients. These
drawbacks are shared by any Fourier or windowed Fourier
representation, because each Fourier component contains
nonlocal information and we need the phase information of
all Fourier components to reconstruct precisely a given re-
gion of the field. Therefore no Fourier technique can prop-
erly extract coherent vortices, because as the vorticity field is
compressed the coherent vortices disappear and become in-
creasingly mixed with the background flow.!"!? This is why
we prefer to use wavelet or wavelet packet bases.

C. A new wavelet-based vortex extraction method

In this paper we propose a new procedure to extract
coherent vortices which uses the projection of the vorticity
onto an orthonormal wavelet basis. This extraction scheme is
based on the assumption that coherent vortices are respon-
sible for the non-Gaussianity of the PDF of vorticity. There-
fore it is designed such that the discarded vorticity coeffi-
cients have a Gaussian PDF. This is the only a priori
assumption we make, apart from the choice of the wavelet
basis. Note that we do not assume any shape or intensity of
the vortices. The coherent vortices correspond to all modes
remaining after discarding those with a Gaussian PDF. In
other words, we define the coherent vortices to be the non-
Gaussian part of the vorticity field. Although the method is
verified here only for a two-dimensional flow, it can also be
used for three-dimensional flows and analyses of such flows
are currently in progress.

Our method is inspired by a theorem of Donoho'® which
states that the optimal way to denoise a signal f, sampled on
N points and perturbed by an additive Gaussian white noise
of variance (n*) (where (-) denotes the average), is to take
its orthonormal wavelet transform ]7, and then select only
those coefficients with absolute value larger than the thresh-
old e,=(2({n?)log N)""* before reconstructing the denoised
signal f~ . In many cases (e.g., turbulent signals) it is not
possible to guarantee a priori the Gaussianity of the noise
and to know its variance (n*). Moreover, the statistical
theory of homogeneous turbulence suggests that the noise
may have some correlation, which corresponds to a scaling
law steeper than for a white noise (i.e., k> in three dimen-
sions and £~ in two dimensions). Therefore we propose the
following algorithm (the wavelet decomposition and recon-
struction is explained in Sec. [ID):

(1) Decompose the signal f into orthonormal wavelet coeffi-
cients f.
(2) Select the coefficients larger than the threshold e;
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=(2(f*)log N)'"?, where we overestimate the variance of
the Gaussian noise we want to remove, by taking the
variance (f?) of the total signal instead of (n?), there-
fore e;=¢€p, .

(3) Reconstruct the signal f~ from the wavelet coefficients
[fI>er.

(4) Reconstruct the signal f_ from the wavelet coefficients
|f|< ey and test Gaussianity by computing the odd mo-
ments Mm<=<f2<"’+l>, with m=1, 2 or 3, the skewness
So={fIV{(f2)3", and the flatness F_=(fL)/(f2)? of
the signal f_ reconstructed from the discarded coeffi-
cients f< .

(5) If M,,.=0, S-=0 and F_=3, f_ is Gaussian and
therefore the remaining part f~ is the non-Gaussian de-
noised signal we wanted to extract.

(6) If |[S_|>€ and |F_—3|>¢&, where € is the prescribed
precision of the algorithm, we do another iteration [start-
ing in (2)] with the new threshold €5
=(2(f%)log N)'"?, which is based on the variance (f%)
of the signal reconstructed from the discarded coeffi-
cients of the previous iteration. If further iterations are
necessary, we use a new threshold e;»= 3(e;+ €7/), in-
termediate between the previous ones, together with a
classical bisection type algorithm.

The iterative process is stopped, either if the discarded coef-
ficients are Gaussian, or if there are no Gaussian coefficients.
In the second case all wavelet coefficients are retained,
which means that there was no Gaussian noise present in the
signal.

D. Application to two-dimensional turbulent flows

To extract coherent vortices in two-dimensional turbu-
lent flows we take the vorticity field w(x,y) as the signal to
be denoised and apply the algorithm described above. We
develop w(x,y) as an orthogonal wavelet series from the
largest scale [,,,=2° to the smallest scale /,;,=2""' (N
=2%)) using a two-dimensional multiresolution analysis
(MRA):>*

o(x,y)=®g0,00000(X,y)
J-12/—-12/-1 3

22 22 el g ), ()

=0 =0 ,=0 4 y
with b, (6.)= by, ()b, (), and
Wi ) =5, (0 80, () (=1,
10 (D (D(1=2), 10 (O, (=3}, @

where ¢;; and ¢, ; are the one-dimensional scaling function
and the corresponding wavelet, respectively. Due to the or-
thogonality, the scaling coefficients are given by @
=(w, o0y and the wavelet coefficients are given by
@ ’iy:<w’1/,jl"ix’iv)’ where (-,-) denotes the L>-inner prod-
uct. V

Using the above algorithm, we split the vorticity field
into w~(x,y) and w-(x,y) by applying the threshold e;
=(2{w*)log N)"?, where (w*)=(w,»)=2Z with Z the total
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enstrophy and N the number of grid points. The advantage of
our method is that this threshold is objective and therefore
has no adjustable parameters. The two fields thus obtained,
w-~ and w., are orthogonal, which ensures a separation of
the total enstrophy into Z=Z.+Z_ because the interaction
term (w~ ,w~) is zero.

In Sec. III we propose a new method of computing tur-
bulent flows which is based on the coherent vortex extraction
algorithm we have just described.

lll. COHERENT VORTEX SIMULATION (CVS)

A. Turbulent flow computation: Direct numerical
simulation versus modeled numerical simulation

In contrast to the statistical theory and to most laboratory
experiments, which deal with L2-norm averaged quantities,
numerical experiments deal with nonaveraged instantaneous
quantities. We compute deterministically the evolution of
one flow realization at a time, and perform the desired aver-
ages afterwards. There are two ways of computing turbulent
flows: either by direct numerical simulation (DNS), or by
modeled numerical simulation (MNS).

In DNS we compute all degrees of freedom of the flow,
whose number N increases with the Reynolds number, as Re
in two dimensions and as Re”* in three dimensions. In this
case both the nonlinear dynamics and the linear dissipation
are fully resolved by computing the time evolution of these
N degrees of freedom. Unfortunately, with present computers
we cannot reach Reynolds numbers larger than a few thou-
sand. Therefore, to compute fully developed turbulent flows
(Re>104) we are forced to use some form of MNS.

In MNS [e.g., unsteady Reynolds averaged (URANS),
large eddy simulations (LES), or nonlinear Galerkin meth-
ods] one supposes that most of the modes can be discarded,
provided that some term(s) or some new equations(s) are
added to model the effect of the discarded modes [called
unresolved modes and denoted (-) -] on the retained modes
[called resolved modes and denoted (-)~]. Ideally, in order
to reduce the computational cost as much as possible, the
number of resolved modes N~ should be much smaller than
the number of unresolved modes N_.. Furthermore, N~
should increase more slowly with Re than N does to be able
to compute fully developed turbulent regimes, i.e., the large
Re limit. We conjectured that this is the case for the wavelet
representation in two dimensions, because the number N~ of
retained modes is roughly proportional to the number of vor-
tices, which seems to increase more slowly with Re than N.!
The N~ resolved modes are then computed deterministically,
while it is assumed that the N_ unresolved modes are pas-
sive, namely that there is no nonlinear instability of some
unresolved modes that can grow in such a way that they
would deterministically affect the resolved modes. Therefore
it must be ensured that the unresolved modes have reached a
quasi-equilibrium state, characterized by a Gaussian PDF,
and are sufficiently decorrelated. In this case it is no longer
necessary to compute the evolution of the unresolved modes
in detail because, if they are in Gaussian statistical equilib-
rium, they are characterized entirely by their mean and vari-
ance. The model describing the effect of the unresolved
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modes onto the resolved modes can then be specified com-
pletely once the mean and variance of the unresolved modes
can be parametrized as a function of the resolved modes.
We consider the incompressible two-dimensional
Navier—Stokes equation in vorticity—velocity formulation,

3,0+ V- (wV)—vV?0=VXF

VA ®)
with F a forcing term and

V=ViV 2, (4)

where V+=(— dy 0y, V=2 denotes the Green’s function of
the Laplacian, and v is the kinematic viscosity. The above set
of equations is completed by appropriate initial and bound-
ary conditions.

Using the orthogonal wavelet decomposition we split the
vorticity field into coherent and incoherent components,

w=w-Tw.. (5)

The corresponding velocity fields can be reconstructed using
the Biot—Savart kernel (4):

V.=ViV 20

Vo=ViV 2, ©)
and it follows that

V=V_.+V_. (7)

Since the wavelet decomposition is orthogonal, we have
(0?y=(w2)+{w2). However, the decomposition of the ve-
locity field is only approximately orthogonal, i.e., (V?)
=(VZ)+(Vi)+e with &/(V?)<1 (cf. Table II). This is
due to the fact that wavelets are almost eigenfunctions of
Biot—Savart kernel, i.e., their localization in physical space
and in Fourier space is well preserved. Note that for the
Fourier decomposition £=0.

B. Principle of CVS

We now describe a new method, called coherent vortex
simulation (CVS), to solve the deterministic evolution of the
coherent vorticity w- , while modeling statistically the effect
of the incoherent vorticity w. . This method is in the spirit
of LES,' but in contrast to LES it uses a nonlinear filter that
depends on each flow realization (using the wavelet thresh-
olding procedure presented in Sec. II). The wavelet filter
corresponds to an orthogonal projection, implying (w-)~
=0, and is hence idempotent, i.e., (w~)~= w~ , which is not
the case for all LES filters (e.g., the Gaussian filter). We filter
the two-dimensional Navier—Stokes equations (3) using the
nonlinear wavelet filter and obtain the evolution equation for
the coherent vorticity w- :

0.4V - (0V)e—vV20.=VXF.
V.V.=0. ®

To model the effect of the discarded coefficients, which cor-
respond to the incoherent stress, we propose (as in LES) to
use a Boussinesq ansatz (cf. Sec. III D).
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For the nonlinear term we wuse Leonard’s triple
decomposition,'* because the nonlinear term is computed
with the same adapted grid as the linear term (i.e., without
dealiasing). Using (5) and (7) we decompose the nonlinear
term of (8) into

(oV)o=w-V_-+L+C+R, ©)
where

L=(0-V:)>~w.V.,

C=(oVs)>+(0Vo)s,

R=(0Vo)>,

denoting the Leonard stress L, the cross stress C, and the
Reynolds stress R, respectively. The sum of these unknown
terms corresponds to the incoherent stress:

7=(wV)s—w-V-=L+C+R, (10)

which describes the effect of the discarded incoherent terms
on the resolved coherent terms. Note that, due to the local-
ization property of the wavelet representation, the Leonard
stress L is actually negligible because (w-V<)-=w- V- 13

The filtered Navier—Stokes equations (8) can be rewrit-
ten as:

,w-+V-(0-V)— vV 0.=VXF.—-V.7
11
V.vV.=0. ()
A detailed analysis of the nonlinear term V-(w-V-)
decomposed into wavelet space is provided in Sec. IVF.

C. DNS using CVS

If with the CVS method we consider a very small thresh-
old, there is no longer any need to model the effect of the
incoherent part because the incoherent stress is then negli-
gible, and in this case CVS becomes DNS. Note that even
when the wavelet threshold tends to zero, the number of
discarded incoherent modes may still be large (cf. Fig. 9 and
Sec. IVH), due to the excellent compression properties of
wavelets for turbulent flows. This is reflected in the fact that
many wavelet coefficients are essentially zero and can there-
fore be discarded without losing a significant amount of en-
strophy (cf. Sec. IV H).

To obtain the coherent variables w-. and V- we deter-
ministically integrate (11) with 7 =0, since the variables are
non-Gaussian and correspond to a dynamical system out of
statistical equilibrium. We propose to solve these equations
in an adaptive wavelet basis.'>~!” The separation into coher-
ent and incoherent components is performed at each time
step. The adaptive wavelet basis retains only those wavelet
modes corresponding to the coherent vortices and it is
remapped at each time step in order to follow their motions,
in both space and scale. In fact, this numerical scheme com-
bines the advantages of both the Eulerian representation (be-
cause it projects the solution onto an orthonormal basis) and
the Lagrangian representation (because it follows the coher-
ent vortices by adapting the basis at each time step).
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TABLE 1. Comparison of the statistical properties of L2-norm quantities
using Fourier low pass filtering (k,=11m~') and wavelet thresholding
(e7=(2(w®log )'?=13.7557").

Fourier Wavelet
# of coefficients N 65536 (100%) 65536 (100%)
N~ 484 (0.7%) 458 (0.7%)
N_ 65052 (99.3%) 65078  (99.3%)
Energy E= %f|v|2 dx 0.591 (100%) 0.591 (100%)
E- 0.588 (99.4%) 0.586 (99.2%)
E. 33X1073%  (0.6%) 2.6X107% (0.4%)
Enstrophy Z= %ﬂ w|? dx 9.82 (100%) 9.82 (100%)
Z- 8.92 (90.8%) 9.26 (94.3%)
Z_ 0.90 (9.2%) 0.56 (5.7%)
Palinstrophy P=3f|Vw|? dx 725 (100%) 725 (100%)
P 261 (36%) 404 (55%)
P 464 (64%) 360 (49%)

D. MNS using CVS

Up to now no modeling has been done, and Eq. (11) is
not closed as long as 7depends on the incoherent unresolved
terms. To close it we propose two possibilities.

(1) A Boussinesq ansatz as for the LES method,'* which
assumes that 7 is proportional to the negative gradient of the
coherent vorticity: 7= — v;V w~ with v; a turbulent viscos-
ity coefficient. The turbulent viscosity v can be estimated,
either using Smagorinsky’s model,'* or taking v, propor-
tional to the enstrophy fluxes in wavelet space, such that,
where enstrophy flows from large to small scales, vy is posi-
tive, and, where enstrophy flows from small to large scales
(i.e., backscatter), v; becomes negative. This second method
for estimating the turbulent viscosity is in the spirit of Ger-
mano’s dynamical procedure used for LES.'

(2) 7 can otherwise be modeled as a Gaussian stochastic
forcing term, proportional to the variances (w2) and (V2)
computed at the previous time steps (the means (w-)
=(V.)=0). This modeling is made possible since the time
evolution of the incoherent background, characterized by the
time scale 7. =(Z.) " "2, is much slower than the character-
istic time scale 7~ =(Z~) "2 of the coherent vortex motions,
because Z->Z_ (cf. Table I). This behavior of the incoher-
ent background had already been noticed, and discussed in
comparison to Fourier filtering in Refs. 10 and 15.

The CVS method relies on the assumption that the inco-
herent part of the flow remains Gaussian, which is true as
long as the nonlinear interactions between the incoherent
modes remains weak. This assumption is valid in regions
where the density of coherent vortices is sufficient, because
the strain they exert on the incoherent background flow then
inhibits the development of any nonlinearity there.! How-
ever, there may be regions, although of small spatial support,
where the density of coherent vortices is not sufficient to
control the incoherent nonlinear term. In this case, there are
two solutions.

(1) To locally refine the wavelet basis in these regions in
order to deterministically compute the effect of the inco-
herent nonlinear term (no longer neglected), which will
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lead to the formation of new coherent vortices by non-
linear instability of the incoherent background flow.

(2) To directly model the formation of new coherent vorti-
ces by adding locally to the wavelet coefficients the
amount of coherent enstrophy which should be trans-
ferred from the incoherent enstrophy by nonlinear insta-
bility. This procedure is similar to the wavelet forcing
proposed by Schneider and Farge.'®

IV. RESULTS

In this section we present the separation into coherent
and incoherent components applied to a two-dimensional ho-
mogeneous turbulent flow. We then show the analysis of the
nonlinear terms of the two-dimensional Navier—Stokes equa-
tions for the coherent and incoherent contributions. Finally,
to illustrate our approach we use the CVS method to com-
pute a two-dimensional mixing layer.

A. Turbulent flow to be analyzed

We consider a two-dimensional homogeneous isotropic
turbulent flow, forced at wave number k;=4 m™ ', consider-
ing the same parameters as the simulation of Legras ef al."
We compute its evolution by DNS using a fully dealiased
pseudospectral code with Newtonian dissipation. The resolu-
tion is N=2562, which corresponds to a Reynolds number of
1000. The flow has reached a statistically steady state char-
acterized by the fact that the energy spectrum no longer
changes. We analyze one flow realization chosen at time ¢
=75s (which corresponds to 17 eddy-turnover times). In
principle, when the flow is statistically steady, all flow real-
izations are equivalent (in the classical statistical sense based
on L*-norm quantities, such as the energy spectrum) and we
would obtain the same statistical results with any other real-
ization. We decompose this vorticity field into coherent and
incoherent components, using the algorithm presented in the
previous paragraph with Battle—Lemarié spline wavelets of
order 6 (cf. Fig. 1). We then compare these results with those
obtained using a classical decomposition of vorticity, into
low wave number modes (i.e., large eddies as used for LES)
and high wave number modes (i.e., small eddies), before
reconstructing the vorticity field from these two components.
In both cases, using either the wavelet decomposition or the
Fourier decomposition, the compression ratio is the same:
the number of modes retained [i.e., coherent or low wave
number modes denoted (-)-] represents 0.7% of the total
number of modes N.

B. Vorticity compression

We apply our wavelet segmentation algorithm (cf. Sec.
I C) to split the vorticity field w into coherent components
- and incoherent components w_ . The coherent flow can
be reconstructed from only 0.7% of the total number of
wavelet modes N, equivalent to a compression ratio of
N/N~ =143. Table II shows that these few (N~ = 0.7% of
N) coherent modes retain most of the energy (E-
= 99.2% of E=3[|V|*dx) and most of the enstrophy
(Z~ = 94.3% of Z=%[|w|*dx). About half of the palin-
strophy (P~ = 55% of P=3[|Vw|?*dx) is due to the mu-
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FIG. 1. Quintic spline wavelet t; ,(x) for scale j=7 and position i=0 in physical space (left) and in Fourier space (right).

tual straining of coherent vortices, while the rest corresponds
to the stretching of the vorticity filaments in the background.

We then compare (cf. Table I) the compression obtained
by wavelet thresholding with the compression obtained using
a linear Fourier filtering, as used in LES. Note that it is not
possible to retain exactly the same number of resolved
modes due to the fact that the two-dimensional Fourier de-
composition is done by tensor product of two one-
dimensional decompositions, therefore N- should be a
square number in this case. We decided to retain a few more
Fourier modes than wavelet modes (222 484 vs 458),
which gives a slight advantage to the Fourier filtering. De-
spite this, the Fourier compression retains less enstrophy
(90.8% of Z) and palinstrophy (only 36% of P) than wavelet
compression (94.3% of Z and 55% of P).

C. Coherent vortex extraction

Our algorithm is based on the sole assumption that there
should be some (maybe only a few) components of the flow
which correspond to a Gaussian probability distribution. We
have checked that the algorithm’s performance does not de-
pend on the choice of the wavelet, as long as the wavelet has
enough smoothness and vanishing moments, as is the case

for the spline wavelet of order 6 we have chosen (cf. Fig. 1).
Now we verify a posteriori that the retained strong wavelet
coefficients actually correspond to the coherent vortices. We
observe that the spatial distributions of both vorticity [Fig.
2(a)] and velocity [Fig. 2(b)] reconstructed from these strong
wavelet coefficients are very well preserved. The coherent
fields have the same inhomogeneity as the original fields and
exhibit very similar structures. On the contrary, the incoher-
ent fields are homogeneous; moreover the incoherent veloc-
ity induced by the incoherent vorticity distribution is essen-
tially zero. The coherent streamfunction is exactly the same
as the total streamfunction, therefore the incoherent stream-
function is almost zero [cf. Fig. 2(c)].

The pointwise correlations between vorticity o and
streamfunction W, which is a discrete version of the coher-
ence function w=F(V¥), are almost identical for both the
total flow and the coherent flow [cf. Fig. 2(d)]. Both the
coherent and total flows have the same scatter plots corre-
sponding to a superposition of coherent vortices, each vortex
being characterized by a function F. The same scatter plot
for the background flow (i.e., from the vorticity w. and
stream function W _ reconstructed from the weakest wavelet
coefficients) does not show any correlation, which confirms

TABLE II. Statistical properties of the statistically stationary vorticity field at =75 s using wavelet threshold-

ing (e7=(2(w?)log N)">=13.75s71).

] - -
Quantity Definition total coherent incoherent
# of coefficients N 65 536 458 65078
% of coefficients 100% 0.7% 99.3%
Second moment (variance) My={0?)=(1/N)ZY | v? 20 19 1
Third moment My=(1/N)EY | o? 8 8 0
Fourth moment M=(INZY | o} 1736 1659 4
Fifth moment Ms=(1IN)ZY | o 1903 2911 0
Sixth moment Mg=(/IN)ZY | of 282763 276 378 28
Skewness S=M;/M3? 0 0 0
Flatness F=M,IM} 5 5 3
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FIG. 3. Comparison of nonlinear wavelet filtering (left) with linear Fourier filtering (right) of vorticity for the same compression rate N/N~ = 143. Top: total
vorticity w. Middle: resolved part w-. Bottom: unresolved part w_.
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dashed lines to the coherent part w- , the dotted-dashed lines to the inco-
herent part w_ , and the dotted lines to a Gaussian fit.

that the background flow is incoherent and contains no co-
herent vortices. Note that the scatter plot of the incoherent
components has been rescaled and actually corresponds to a
very small cloud of points located at the center of the scatter
plot of the original fields.

If we perform the separation using Fourier filtering (with
the same compression rate N/N~ = 143), we observe that the
vorticity field (w-)’ reconstructed from the large scales is
smoother than the vorticity field (w~)" reconstructed from
the strong wavelet coefficients (cf. Fig. 3). We also ascertain
that the incoherent field w. is more homogeneous and
smoother for the wavelet filtering than for the Fourier filter-
ing, because (w.)’ presents localized strong gradient re-
gions.

D. Vorticity PDF

In Table II we verify a posteriori that the incoherent
components are Gaussian with skewness S =0, flatness
F”=3 and odd moments M%_=M7s_=0. The superscript
(-)" denotes the wavelet filtering, while the superscript
(-)7 denotes the Fourier filtering. In contrast to the incoher-
ent components, the coherent components have non-
Gaussian statistics essentially identical to those of the total
vorticity, with S¥=S8=0.1, F{=F=35, and M,-=M,.
This is also illustrated at the top of Fig. 4 where we have
superimposed the three PDFs, for the total vorticity w, the
coherent vorticity w~ , and the incoherent vorticity w. . The
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TABLE III. Comparison of the statistical properties of the nonlinear term
and its components using Fourier low pass filtering (k,=11 m™!) and wave-
let thresholding (e7=(2(w?)log N)">=13.75s71).

. Fourier Wavelet
Quantity
# of coefficients N~ 484 (0.7%) 458 (0.7%)
# of coefficients N_ 65 052 (99.3%) 65078 (99.3%)
L%morm  Flatness  L?-norm  Flatness
o 4.4 4 4.4 4
ws 42 5 43 5
W 1.3 4 1.1 3
u 0.8 3 0.8 3
U~ 0.7 3 0.7 3
" 0.1 4 0.1 3
v 0.8 3 0.8 3
v~ 0.8 3 0.8 3
v 0.1 5 0.05 3
d.w 27.0 6 27.0 6
9.0~ 16.2 4 202 5
d.w- 21.4 9 18.7 6
dyo 27.0 8 27.0 8
- 16.1 3 20.0 5
dyow < 21.6 10 19.2 8
v-Vo 12.1 9 12.1 9
v--Vo- 7.8 5 11.9 12
v--Vo_ 0.9 26 0.9 13
v--Vo_ 11.2 9 12.0 12
v--Vo- 1.0 10 1.4 11

PDF of the incoherent vorticity has a parabolic shape similar
to the PDF of a Gaussian distribution plotted in log—lin co-
ordinates. When we compare on Fig. 4 (bottom) these results
with those obtained with the Fourier decomposition, we ob-
serve that the PDF of the high wave number modes is not
perfectly Gaussian and has a flatness 4, while flatness is 3 for
the wavelet filtering (cf. Table III).

Using the Biot—Savart kernel (4) we reconstruct the
three velocity fields V, V¥, and V2, induced by the three
corresponding vorticity fields. The coherent velocity VY
=(u,v)¥ has the same Gaussian PDF as the total velocity
V=(u,v), and the incoherent velocity V¥ =(u,v)¥ has a
Gaussian PDF with a much smaller variance (cf. Table III).

The vorticity and velocity PDFs of the high wave num-
ber Fourier modes are not Gaussian, with flatness 4 for u
and w., and flatness 5 for v (cf. Table III and Fig.
4 —bottom). This may have important implications for LES,
because in this method the high wave number modes are not
computed but instead modeled statistically assuming that
they are quasi-Gaussian.

E. Energy spectrum

In Fig. 5 we compare the energy spectra associated with
the coherent and incoherent components of the wavelet fil-
tering with the energy spectra associated with the low wave
number and high wave number modes of the Fourier filter-
ing. It has been shown that, when using wavelet filtering,
both coherent and incoherent components are multiscale,m
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FIG. 5. Energy spectrum E(k). Top: nonlinear wavelet filtering. Bottom:
linear Fourier filtering. The solid lines correspond to the total field V, the
dashed lines to the resolved part V- , and the dotted lines to the unresolved
part V.

although the coherent part dominates at low wave numbers
and the incoherent part dominates at high wave numbers
(Fig. 5—top). This behavior comes from the fact that the
energy spectrum is the Fourier transform of the two-point
correlation and is less sensitive to localized events at small
scales. In fact, the energy spectrum (as all other L?-norm
statistical quantities) is poorly adapted to study intermittent
flow fields.” In particular, the small scales associated with the
coherent vortices have a spatial support too small to be well-
detected by the two-point correlation; this explains why the
incoherent component, which is homogeneous and therefore
tends to be dense in space, dominates at high wave numbers.

F. Nonlinear term

At the top of Fig. 6 we have plotted the nonlinear term
V. (wV)=V-Vo together with its PDF (cf. Fig. 7—top),
which is highly non-Gaussian. The fact that the PDF of the
nonlinear term is non-Gaussian is not surprising since Gaus-
sianity is stable under linear operations but not under multi-
plication. The nonlinear term of the Navier—Stokes equation
is responsible for the cascade mechanism and for the result-
ing non-Gaussianity of turbulent fields. Since this term is
difficult to solve, it is essential for the performance of the
computational scheme that the resolved modes V- -V w-. re-
tain as much of it as possible. This property is illustrated in
Fig. 7, which shows that the PDF of the nonlinear term com-
puted from the coherent wavelet modes is essentially the
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same as the PDF of the total nonlinear term, which is not true
for the Fourier filtering. This difference is confirmed by plot-
ting the components of the nonlinear term split into V-V
=V.-Vo-+V_.-Vo_+V_-Vu.+V_-Ve_. for both
Fourier and wavelet filterings (cf. Fig. 6 and Table III).

First, we observe that for both Fourier and wavelet fil-
terings the cross term V_-Vw. and the Reynolds term
V_.-Vo. are negligible (less than 10% of |[V-Vo|,, cf.
Table IIT). But the Reynolds term V_-Vw_ is more non-
Gaussian, with flatness 26, for Fourier filtering than for
wavelet filtering, with flatness 13 (cf. Fig. 6 and Table III).

In Fig. 6 we compare the two other terms V- -V - and
V.. -Vw_ . They are similar (in amplitude and regularity) for
the wavelet filtering, while the term V- -V w~ is smaller (cf.
Table III) and smoother than the term V- -V w_ for the Fou-
rier filtering.

In summary, the Fourier filtering tends to have the re-
solved term (V= -V w-)" smoother and more Gaussian than
the unfiltered nonlinear term V-Vw. The wavelet filtering
has the opposite behavior: the resolved nonlinear term
(V- -Vw.)? retains the pronounced gradients and is more
non-Gaussian than the unfiltered nonlinear term V-V,
while the unresolved term (V_-Vw_.)® is more Gaussian
than with Fourier filtering. This is an advantage of the wave-
let filtering, because it is important that the resolved nonlin-
earity, which is deterministically computed, should be less
Gaussian, while the unresolved nonlinearity, whose effect is
statistically modeled, should be more Gaussian.

G. Vorticity gradients

In Fig. 8 we have plotted the PDF of the vorticity gra-
dients in the x direction (gradients in the y direction are simi-
lar and are therefore omitted) in order to understand the dis-
crepancy we have observed in the behavior of the nonlinear
term depending on the segmentation we operate. As before,
we find that the PDF of vorticity gradients, computed from
the coherent wavelet modes, are very similar to the PDF of
the vorticity gradients of the original flow, but this is not the
case for the Fourier filtering, because the tails (extreme
events) of the original flow PDF have been lost. This is also
illustrated by considering the L? norm of the vorticity gradi-
ents (i.e., palinstrophy P), which is weaker for the retained
Fourier modes than for the discarded Fourier modes (cf.
Tables T and III). Ideally one would like the opposite to be
true, in order to guarantee the performance of the LES
method. This is in fact the case for the wavelet filtering
where the retained vorticity gradients are stronger than the
discarded vorticity gradients (cf. Tables III). The difference
is due to the space-scale adaptivity of the wavelet method
which allows a much more accurate representation of the
strong gradients, while the global cutoff scale of the Fourier
filter destroys the strong gradients necessary to compute the
nonlinear term. Moreover, for the Fourier filtering the vor-
ticity gradients of the retained modes are quasi-Gaussian
with flatness 4, while the vorticity gradients of the discarded
modes are non-Gaussian with flatness 9 (cf. Tables III), al-
though the reverse would be desirable.
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FIG. 6. Comparison of nonlinear wavelet filtering (left) with linear Fourier filtering (right) of the nonlinear term V-V for the same compression rate
N/N-=143. Top: total term. Middle: V- -Vw- . Bottom: V_-Vaw_ .
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H. Application of CVS

We now use the CVS method to compute the evolution
of a temporally developing mixing layer. We take as initial
condition a hyperbolic-tangent velocity profile, which is
known to be inviscidly unstable. We superimpose in the vor-
tical region a Gaussian white noise to trigger the Kelvin—
Helmholtz instability. For more details on the numerical
simulation we refer the reader to Ref. 20. The integration is
done by computing only the evolution of the coherent part
(w~,V-), while discarding the incoherent part (w-,V_.) at
each time step, which corresponds to Eq. (11). This is a DNS
since we choose a very small threshold, e=ce; with ¢
=10"3, because we do not model the effect of the incoher-
ent modes on the coherent modes in taking 7=0.
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In Fig. 9 we show the coherent vorticity field w-. at time
t=37.5s (i.e., nine eddy turnover times), the corresponding
wavelet coefficients @~ used for the computation, and the
associated refined grid in physical space. The time evolution
of the coherent vorticity and the energy spectrum are similar
to the evolution of the total vorticity?® and of the total energy
spectrum (cf. Fig. 9) computed using a classical pseudospec-
tral method at resolution 256%. As soon as the vortices are
formed by Kelvin—Helmbholtz instability (around =7 s), the
number of retained wavelet coefficients remains quasicon-
stant for the rest of the simulation. The retained wavelet
coefficients represent only 8% of the total number of coeffi-
cients necessary for a pseudospectral integration. To obtain a
higher compression, a turbulence model with 7#0 (cf. Sec.
[ID) is necessary to parametrize the effect of the discarded
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FIG. 9. Mixing layer computed with CVS in an adaptive wavelet basis. Top left: vorticity field at r=37.5 s. Top right: corresponding coherent wavelet
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for the diagonal direction). Bottom left: corresponding adaptive grid in physical space at t=37.5 s). Note that it dynamically adapts to the flow evolution in
space and scale. Bottom right: corresponding energy spectrum at r=37.5 s. We compare the same mixing layer computed with a Fourier pseudo-spectral code
(solid line) or with the CVS (dotted line for e=10"> and dashed line for e=107°).

coefficients, which then contain a non-negligible amount of
enstrophy.

V. CONCLUSION

In this paper we have introduced and validated a
wavelet-based algorithm for separating the Gaussian and
non-Gaussian parts of a turbulent flow. This algorithm leads
to a new definition of the coherent vortices: they are the
components of the flow that contribute to the non-Gaussian
part of the vorticity PDF. The algorithm is applied to a two-
dimensional homogeneous turbulent flow and we show that
the Gaussian and non-Gaussian parts of the vorticity field
can be well separated using the nonlinear wavelet filtering
we have proposed. It is also proven that the non-Gaussian

part of vorticity corresponds to the coherent vortices, i.e.,
compact regions of strong vorticity and vorticity gradients
characterized by a local correlation between vorticity and
stream function. Furthermore, it turns out that the coherent
vortices can be represented by only a few modes (less than
0.7% of the total for a resolution 2562), while the Gaussian
incoherent field makes up the rest. Note that larger compres-
sions are obtained at higher resolutions.

We have proposed a new method based on this vortex
extraction algorithm for calculating two-dimensional turbu-
lent flows. This method, called coherent vortex simulation
(CVS), is described in detail and is applied to compute a
mixing layer. We discuss some of its potential advantages
with respect to classical methods (e.g., LES). Perhaps the
most interesting aspect of this approach is that the separation
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involves no adjustable parameters and guarantees the Gaus-
sianity of the discarded modes, which allows the statistical
methods (that have been developed based on the assumption
of Gaussian statistics) to be used only for that part of the
flow where they are actually valid. Since the background
flow is homogeneous and Gaussian, the classical theory of
homogeneous turbulence is valid there, which is not the case
for the coherent vortex flow, which is non-Gaussian and in-
homogeneous. The CVS method is not restricted to the two-
dimensional case and can be extended to compute three-
dimensional turbulent flows. It is based on deterministically
computing the coherent vortex flow using an adaptive wave-
let basis, and modeling statistically the incoherent back-
ground flow. We believe that CVS combines statistical and
deterministic approaches in a simple and natural way.
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