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In this work coherent vortex simulation (CVS) and stochastic coherent adaptive large eddy simulation
(SCALES) simulations of decaying incompressible isotropic turbulence are compared to DNS and
large eddy simulation (LES) results. Current LES relies on, at best, a zonally adapted filter width to
reduce the computational cost of simulating complex turbulent flows. While there is an improvement
over a uniform filter width, this approach has two limitations. First, it does not capture the high
wave number components of the coherent vortices that make up the organized part of turbulent flows,
thus losing essential physical information. Secondly, the flow is over-resolved in the regions between
the coherent vortices, thus wasting computational resources. The SCALES approach addresses these
shortcomings of LES by using a dynamic grid adaptation strategy that is able to resolve and track
the most energetic coherent structures in a turbulent flow field. This corresponds to a dynamically
adaptive local filter width. Unlike CVS, which we show is able to recover low order statistics with no
subgrid scale (SGS) stress model, the higher compression used in SCALES necessitates that the effect
of the unresolved SGS stresses must be modeled. These SGS stresses are approximated using a new
dynamic eddy viscosity model based on Germano’s classical dynamic procedure redefined in terms
of two wavelet thresholding filters.

Keywords: Large Eddy Simulation; Stochastic Coherent Adaptive Large Eddy Simulation; Coherent Vortex Simu-
lation; Turbulence; Wavelets; Wavelet Filtering

1. Introduction

Turbulence is characterized by energetic eddies that are localized in space and scale, yet most
numerical methods for turbulent flow simulations do not take advantage of this localization.
In this work we explore the possibility of making use of this localization by ‘compressing’
the turbulence problem such that a simulation with a subset of the total modes captures the
dynamics of the most energetic eddies in the flow. A recent method for simulating turbulence
called coherent vortex simulation (CVS), introduced by Farge et al. [1], uses a wavelet filter to
dynamically resolve and ‘track’ the energetic coherent eddies or vortices in a turbulent flow. It
has been shown that the resulting subgrid scale (SGS) field with CVS is near Gaussian white
noise [2, 3], which results in practically no SGS dissipation. Therefore, a CVS simulation with
no SGSmodel is shown to recover low-order and some high-order statistics [4]. It is important
to note that there is still significant energy transfer between the resolved and SGS modes
and vice versa, but the statistical average or net energy transfer is zero. If other higher order
statistics are required, then a purely stochastic SGS stress model may be able to reproduce
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the effect of the SGSs more accurately. One of the challenges with the CVS method is how
to determine on the fly during an actual simulation the ‘ideal’ wavelet compression, which
results in a purely incoherent SGS field. Even if it can be found in a cost-effective manner, it is
still likely that the associated adaptive grid will be too fine to be cost effective for simulating
high Re number flows, since the computational cost of CVS falls between DNS and large eddy
simulation (LES).
Recently a new methodology called stochastic coherent adaptive large eddy simulation

(SCALES) [2] has been introduced that shares with CVS the ability to dynamically re-
solve and ‘track’ the most energetic part of the coherent eddies in a turbulent flow field,
but with the higher computational efficiency associated with LES. With SCALES the max-
imum number of modes in the simulation are resolved, given there is a balance between
computing resources and user defined acceptable simulation error. Thus, with SCALES the
collocation grid dynamically adapts to the local flow in order to resolve the maximum por-
tion of the coherent energetic eddies. With a field compression in the range of that used
with typical LES applications, the SGS modes are no longer near Gaussian white noise, as
in CVS, and so a SGS model is required. Yet at the same field compression as LES, the
wavelet filter used with SCALES results in a significantly reduced level of total SGS dis-
sipation [2]. This means that less of the flow needs to be modeled. In this work we apply
the SCALES method to the problem of three-dimensional decaying incompressible isotropic
turbulence.
An eddy viscosity type SGS model for SCALES is also investigated in this work. Since

the wavelet threshold filter lacks a clearly defined global filter width, an alternative model
scaling based on the non-dimensional wavelet threshold parameter ε is proposed. Results
using a modified Smagorinsky [5] eddy viscosity SGS stress model, using both a constant
model coefficient and a dynamic coefficient determined by a new dynamic procedure, are
shown. This new dynamic procedure follows the derivation of Germano’s [6–8] classical
dynamic procedure. Test filtering is defined as a wavelet filter with threshold parameter
equal to 2ε, and an explicit grid filter is used with a wavelet filter threshold parameter value
of ε.
In this research, the CVS and SCALES methods have been implemented using a dynam-

ically adaptive wavelet collocation (DAWC) method [9, 10]. The DAWC method is ideal
for implementing CVS and SCALES as it combines the resolution of the energetic coher-
ent modes in a turbulent flow with the simulation of their temporal evolution [2, 9–11].
The wavelet collocation method employs wavelet compression as an integral part of the
solution such that the solution is obtained with the minimum number of grid points for a
given accuracy. When the threshold is chosen simply to satisfy numerical accuracy (and
SGSs are not modeled) we call this method wavelet based direct numerical simulation or
WDNS [2, 11].
The rest of this paper is organized as follows. In section 2 the background theory and the

results relevant to this work are presented. The LES method is introduced in section 2.1.
Then the general properties of wavelets and, in particular, second-generation wavelets are
introduced along with an introduction to wavelet threshold filtering in sections 2.2 and 2.3.
The properties of wavelet compression and wavelet de-noising are then discussed in section
2.4. In section 3 a DAWC solver is introduced, which has been used to implement the CVS and
SCALES methods. In section 4.1 the implementation of SCALES along with the introduction
of a new dynamic SGSmodel is presented. Then in section 5 fully adaptive CVS and SCALES
simulations of three-dimensional decaying incompressible isotropic turbulence based on the
DAWC method are presented. Finally, the conclusions and the discussion of future work are
presented in section 6.
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2. Background

2.1 Large eddy simulation

The LES method is based on the premise that the large scales of a turbulent flow dominate
mixing, heat transfer and other quantities of engineering interest, while the small scales are of
interest only because of how they effect the large scales. The LES equations for incompressible
flow, which describe the evolution of the large-scale eddies in the flow field, can be written as

∂ui
∂xi

= 0 , (1)

∂ ūi
∂t

+ ∂(ūi ū j )
∂x j

= − 1
ρ

∂ p̄
∂xi

+ ν
∂2ūi

∂x j∂x j
− ∂τi j

∂x j
, (2)

where

τi j = uiu j − ūi ū j (3)

and ui is the velocity field, ρ is density, ν is kinematic viscosity, p is pressure and ¯(·) represents
spatial filtering. As a result of the filtering process, the unresolved quantity τi j , commonly
referred to as the SGS stress, is introduced. Note that τi j is a function of the unfiltered velocity
field ui . In order to close (1) and (2) and realize the benefit of LES, a low-order model for the
SGS stress, which is based on the resolved quantities, is needed. In practice τi j can be modeled
either deterministically [12–14] or stochastically [15]. Most current LES is done using purely
deterministic models.
In LES the filter is either explicit or it can be defined implicitly by the computational

grid. Either way, LES uses a reduced computational grid that is capable of supporting (or
representing) only a subset of the total number of active modes in the flow. Current state-of-
the-art LES work uses non-uniformly stretched meshes or zonal grids [12, 16, 17] that are
refined a priori to the geometry of the problem.
Current research efforts in LES are focused on finding improved SGS stress models for

τi j . Currently, the most common SGS stress models used are of the eddy viscosity type [18].
These more advanced models are based on the simple one proposed by Smagorinsky [5]. In
this type of model a linear eddy viscosity model is used to relate the SGS stress (τi j ) to the
filtered rate of strain (Si j ).

2.2 General properties of wavelets

Wavelets are basis functions that are localized in both physical space (due to their finite support)
and wavenumber space (due to their vanishing moments), see e.g. figure 1. For comparison,
the classical Fourier transform is based on functions (sines and cosines) that are well localized
in wavenumber, but do not provide localization in physical space due to their global support.
Because of this space/scale localization, the wavelet transform provides both spatial and scale
(frequency) information, while the Fourier transform provides only frequency information.
A scalar field f (x) can be represented in terms of wavelet basis functions as

f (x) =
∑

l∈L0
c0l φ

0
l (x)+

+∞∑

j=0

2n−1∑

µ=1

∑

k∈Kµ, j

dµ, j
k ψ

µ, j
k (x), (4)

where φ0k(x) and ψ
µ, j
l are, respectively, n-dimensional scaling functions and wavelets of dif-

ferent families (µ) and levels of resolution ( j). One may think of a wavelet decomposition
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Figure 1. (a) Lifted interpolating wavelet ψ of order 6 (a) and (b) its Fourier transform ((ξ ).

as a multilevel or multiresolution representation of a function, where each level of resolu-
tion j (except the coarsest one) consists of wavelets ψ

j
l or family of wavelets ψ

µ, j
l hav-

ing the same scale but located at different positions. Scaling function coefficients repre-
sent the averaged values of the field, while the wavelet coefficients represent the details
of the field at different scales. The wavelet functions have a zero mean, while the scal-
ing functions do not. Note that in n dimensions there are 2n − 1 distinctive n-dimensional
wavelets [19]. Also note that because of the local support of both scaling functions and
wavelets, there is a one-to-one correspondence between the location of each scaling func-
tion or wavelet with a grid point. As a result each scaling function coefficient c0l and each
wavelet coefficient dµ, j

k is uniquely associated with a single grid point with the indices l and k,
respectively.
Traditionally, one-dimensional first-generation wavelets ψ

j
k are defined as translates and

dilates of one basic waveletψ , i.e.ψ j
k (x) = ψ(2 j x − k). Second-generation wavelets [20, 21]

are a generalization of first-generation wavelets that supply additional freedom to deal with
arbitrary boundary conditions and irregular sampling intervals. Second-generation wavelets
form a Riesz basis for L2 space, with the wavelets being local in both space and frequency
and often having many vanishing polynomial moments, but without the translation and di-
lation invariance of their first-generation cousins. Despite the loss of these two fundamen-
tal properties of wavelet bases, second-generation wavelets retain many of the useful fea-
tures of first-generation wavelets, including a fast O(N ) transform. The construction of
second-generation wavelets is based on the lifting scheme, which is discussed in detail by
Sweldens [20, 21].
For this study, we use a set of second-generation wavelets known in the literature as lifted

interpolating wavelets [10, 20]. In particular, simulations with the DAWC solver are run using
a lifted interpolating wavelet of order 6, which is shown in figure 1 along with its Fourier
transform. For a more in-depth discussion on the construction of these wavelets, the reader
may refer to the papers by Sweldens [20, 21] and Vasilyev and Bowman [10]. For a more
general discussion on wavelets, we refer the reader to the books of Daubechies [19] and
Mallat [22].

2.3 Wavelet filters

Wavelet filtering is performed in wavelet space using wavelet coefficient thresholding, which
can be considered as a nonlinear filter that depends on each flow realization. The wavelet
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thresholding filter is defined by

f >ε(x) =
∑

l∈L0
c0l φ

0
l (x)+

+∞∑

j=0

2n−1∑

µ=1

∑

k ∈ Kµ, j

|dµ, j
k | > ε|| f ||WTF

dµ, j
k ψ

µ, j
k (x) , (5)

where f (x) is a scalar field, ε > 0 is the non-dimensional (relative) threshold parameter and
||·||WTF is the wavelet threshold filtering (WTF) norm that provides the (absolute) dimensional
scaling for filtered variable f . For instance, in the case of velocity, the (absolute) dimensional
scaling can be specified as the L2 norm (||ui ||WTF = ||ui ||2) or the L∞ norm (||ui ||WTF =
||ui ||∞). Note that once the WTF norm || · ||WTF is specified, the wavelet thresholding filter
(5) is uniquely defined by the non-dimensional threshold parameter ε.
The reconstruction error due to wavelet filtering with non-dimensional threshold parameter

ε can be shown to be [9, 23]

|| f (x)− f >ε(x)||2 ≤ Cε|| f ||WTF (6)

for a sufficiently smooth function f (x), where C is of order unity.
As will be shown later, when the wavelet threshold filter is applied to a system of evolution

equations, each variable could be filtered according to equation (5). Once filtered, each variable
could be integrated in time. However, this would lead to numerical complications due to the
one-to-one correspondence between the location of a wavelet with a grid point. In particular,
each variable would be solved on a different grid. In order to avoid this difficulty and make
filtering of each term in the evolution equation easy, in the present study the coupled wavelet
thresholding strategy is used. The mask of significant wavelet coefficients is constructed for
each variable according to the thresholding criteria of equation (5). The union of these masks
will result in the global thresholdingmask, which is used for each dependent variable and each
term in the equation. Note that in some applications, additional variables, such as vorticity
or strain rate, can be used for the construction of the global mask. Once this global mask
is constructed, one can view the wavelet filtering as local low-pass filtering, where the high
frequencies are removed according to the global mask. The effective wavelet filter width
depends on the choice of WTF norm, the spatial distribution of the variables used for defining
the coupled wavelet filter mask and is a function of the non-dimensional threshold parameter
ε. Such interpretation ofWTF highlights the similarity between the SCALES and the classical
LES approaches. However, the wavelet thresholding filter is drastically different from the LES
filters, primarily because it changes in time following the evolution of the solution, which in
turn results in an adaptive computational grid that tracks in physical space the areas of locally
significant energy of all variables used for the grid adaptation. However, it is important to
note that, unlike the Fourier modes, there is no one-to-one correspondence between the wave
number and the wavelet level. Instead, eachwavelet level represents a region of wave numbers.
Figure 2 shows the energy spectra of the modes associated with 6 wavelet scales or levels
along with the full energy spectra of a turbulent field, obtained from a 2563 DNS simulation of
forced isotropic turbulence [24] with Reλ = 168. Note that this turbulent field will hereafter
be referred to as F256. This figure highlights the fact that each wavelet scale has energy in a
region of wave numbers and that these regions overlap.

2.4 Wavelet compression and wavelet de-noising

The major strength of wavelet filtering decomposition (5) is the ability to compress signals.
For functions that contain isolated small scales on a large-scale background, most wavelet
coefficients are small and thus we can retain good approximation even after discarding a large
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Figure 2. Energy spectra of turbulent velocity field F256: ( ), contained in wavelet levels. Level 1: ( ),
Level 2: ( ), Level 3: ( ), Level 4: ( ), Level 5: ( ), Level 6: ( )

number of wavelets with small coefficients. Intuitively, the coefficient dµ, j
l will be small unless

u(x) has variation on the scale of j in the immediate vicinity of wavelet ψµ, j
l (x).

Another important property ofwavelet analysis used in thiswork is the ability of thewavelets
to de-noise signals. The wavelet de-noising procedure, also called wavelet-shrinkage, was
introduced by Donoho [25, 26] and is based on the orthogonal wavelet decompositions. It can
be described as follows: given a function that consists of a smooth function with superimposed
noise, one performs a forward wavelet transform and sets to zero ‘noisy’ wavelet coefficients
(i.e., those wavelet coefficients whose modulus squared is less than the noise variance σ 2),
otherwise the wavelet coefficient is kept. This procedure is known as hard thresholding.
Donoho [25] demonstrated that hard thresholding is optimal for de-noising signals in the
presence of Gaussian white noise. In the CVS method discussed in this work the ‘noise’ is
actually the SGS modes.

3. Dynamically adaptive wavelet collocation method

A key component in the implementation of the SCALES method is the development of a
DAWC [9–11, 27] solver. This solver is ideally suited to the simulation of turbulence since
wavelets adapt the numerical resolution naturally to the localized turbulent structures that
exist at all wave numbers in a fully developed turbulence. The wavelet collocation method
takes advantage of the fact that wavelets are localized in both space and scale, and as a
result, functions with localized regions of sharp transition are well compressed using wavelet
decomposition. The adaptation is achieved by retaining only thosewavelets whose coefficients
satisfy the thresholding criteria of equation (5). Thus, high-resolution computations are carried
out only in those regionswhere sharp transitions occur.With this adaptation strategy, a solution
is obtained on a near optimal grid that ‘tracks’ the coherent vortices in the field, i.e., far fewer
grid points are needed for wavelets than for conventional finite-difference, finite-element
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or spectral methods [28]. By varying the threshold parameter ε, this method can be used
to implement any of the wavelet-based methods discussed above, namely WDNS, CVS or
SCALES. The DAWC collocation algorithm has already been successfully applied to the
solution of thermo-acoustic wave propagation problems [27], combustion problems [9, 10],
fluid–structure interaction problems [11], viscoelastic flows [29, 30] and the compaction
phenomenon in a poro-viscoelastic matrix [31].
Let us briefly outline the main features of the numerical method. Details can be found

in Refs. [9, 10]. In the wavelet collocation method, there is a one-to-one correspondence
between grid points and wavelets. This makes the calculation of nonlinear terms simple and
allows the grid to adapt automatically to the solution at each time step by adding or removing
wavelets. Very briefly, at each time step we take the wavelet transform of the solution and
apply the global thresholding mask to remove wavelets, which do not satisfy the thresholding
criteria of equation (5) for all of the adaptation variables. To account for the evolution of the
solution over one time step, the computational grid needs to be extended to include grid points
associated with wavelets whose coefficients are, or can possibly become, significant during
the time integration step [32]. To do this we add grid points that are adjacent in both position
and scale to each significant wavelet coefficient. While the cost of this added adjacent zone is
significant at low compression ratios, it becomes much less so at higher compression ratios.
This diminishing cost of the adjacent zone with increased compression will be the case for any
numerical problem that has inherent local structures that dominate the field being simulated.
Figure 3 shows the compression ratio vs. the wavelet filter threshold parameter ε for a wavelet
collocation grid adapted to a DNS field of isotropic turbulence (Reλ = 168) with and without
an adjacent zone. For this a priori test, the coupled wavelet filter was applied on the basis of
the wavelet thresholding of the velocity components using L∞WTF norm. We can see clearly
that the added overhead of the adjacent zone becomes insignificant for compression ratios over
98%. This is the case because in turbulent flows, like the one considered, the flow is dominated
by localized energetic coherent vortices. This trendwill also hold for other common flows such
as flow fields involving vortices due to fluid–structure interaction or shocks in compressible
flow fields. Since each wavelet corresponds to a single grid point, this procedure allows the

Figure 3. Field compression vs. relative wavelet threshold parameter ε, using velocity wavelet filtering, without
adjacent zone (——-) and with adjacent zone (- - - - - - - -) for field F256. It can be seen that as ε increases, the loss in
compression due to the adjacent zone becomes less significant. The (absolute) dimensional scaling ||ui ||WTF = ||ui ||∞
was used in the wavelet filtering for this a priori test.
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grid to automatically follow the evolution of the solution in position and scale. We use second-
generation wavelets [21], which allow the order of the wavelet (and hence of the numerical
method) to be varied easily. The method has a computational complexity O(N ), where N
is the number of wavelets retained in the calculation (i.e., the union of those wavelets with
coefficients greater than ε|| fi ||WTF for all adaptation variables, plus nearest neighbors).
In summary, the DAWC method is an adaptive, variable-order method for solving partial

differential equations with localized structures that change their location and scale in space
and time. Because the computational grid automatically adapts to the solution (in position
and scale), we do not have to know a priori where the regions of high gradients or structures
exist. In related work the DAWC method has been combined with the Brinkman penalization
method [11, 33] to define solid structures in the domain for the simulation of complex geometry
flows.

4. SCALES implementation

The SCALES method is based on the premise that the most energetic coherent vortices (or
structures) of a turbulent flow dominate mixing, heat transfer and other quantities of engi-
neering interest, while the smaller incoherent background is of interest only because of how
it affects the energetic coherent vortices [2]. The SCALES equations for incompressible flow,
which describe the evolution of the most energetic coherent vortices in the flow field, can be
written as

∂ui>ε

∂xi
= 0, (7)

∂ui>ε

∂t
+ ∂(ui>ε u j>ε)

∂x j
= − 1

ρ

∂ p̄>ε

∂xi
+ ν

∂2ui>ε

∂x j∂x j
− ∂τi j

>ε

∂x j
, (8)

where

τi j
>ε = uiu j>ε − ui>ε u j>ε (9)

and ui is the velocity field, ρ is density, ν is kinematic viscosity, p is pressure and ¯(·)>ε

represents spatial filtering with a coupled wavelet thresholding filter. As a result of the filtering
process the unresolved quantity τi j

>ε , commonly referred to as the subgrid scale (SGS) stress,
is introduced. Note that τi j>ε is a function of the unfiltered velocity field ui . In order to close
(7) and (8) and realize the benefits of SCALES, a low-order model for the SGS stress based
on the resolved quantities is needed. Also note that analogous to LES with non-uniform filter
width [34–36] there is a commutation error between wavelet filtering and derivative operators,
the effect of which is not considered in this paper. We note though that a significant number
of points below the thresholding level, ε||ui ||WTF, are retained due to the adjacent zone and
reconstruction check procedures [9, 10, 37] in the regions of the energetic vortices, and these
result in a significant reduction of the commutation error.

4.1 SCALES SGS modeling

The standard Smagorinsky [5] eddy viscosity SGS stress model defines an eddy viscosity that
is proportional to the filter width and the characteristic filtered rate of strain. In the case of the
coupled nonlinear wavelet thresholding filter used in SCALES, the filter width is implicitly
defined by the non-dimensional wavelet threshold parameter ε. Therefore in SCALES, ε is
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used to properly scale the eddy viscosity:

νT = Cε,
2εα||S̄>ε ||, (10)

where Cε is non-dimensional model coefficient, , is the global characteristic length scale and

Si j
>ε = 1

2

(
∂ui>ε

∂x j
+ ∂u j>ε

∂xi

)
(11)

is the strain rate of the resolved scales. Note that the model units do not depend on α simply
because ε is non-dimensional. We will show in section 4.2 that appropriate scaling is obtained
with α = 2. The new linear eddy viscosity model is then used to define a model for the SGS
stress (9):

τMi j
>ε

≡ −2νT Si j
>ε

, (12)

where νT is the turbulent eddy viscosity.
In this work the global characteristic length scale , is introduced to obtain the proper

units for the eddy viscosity νT . In addition, the length scale is assumed to be independent
of the filter threshold parameter ε. With these two assumptions, the exact definition of ,

does not need to be specified, since the whole group Cε,
2εα is determined by the dynamic

procedure. ,2 can be interpreted as an averaged characteristic length scale that is absorbed
into the dynamic procedure. Currently we are working on the extension of the model that uses
a local characteristic length scale ,, interpreted as the local characteristic vortical length scale
implicitly defined by the wavelet thresholding filter.
The new Germano dynamic formulation for the model coefficient Cε is thus based on the

wavelet filter threshold parameter ε. For the dynamic procedure, the grid filter is defined as
(·)>ε and the ‘test’ filter is defined as (·)>2ε . The adjacent zone is excluded in both cases to
obtain the proper model scaling. The dynamic procedure is then based on the original SGS
stress equation (9) and an alternative SGS stress

Ti j
>2ε = uiu j>ε>2ε − ui>ε>2ε

u j>ε>2ε
, (13)

which would result from applying the wavelet thresholding test filter ((·)>2ε) to (7)–(9). Note
that the wavelet filter is a projection operator and therefore by definition

(·)>εC ≡ (·)>εA
>εB

, (14)

where εC = max(εA, εB). Filtering (9) at the test filter level and subtracting it from (13) results
in the modified Germano’s identity [6]:

Ti j
>2ε − τi j

>ε>2ε = ui>εu j>ε>2ε − ui>ε>2ε
u j>ε>2ε

. (15)

Then, substituting the modeled SGS stresses at the two filter levels into (15) gives

Ti j
>2ε − τi j

>ε>2ε ≈ T M
i j

>2ε
− τMi j

>ε>2ε
(16)

= 2Cε,
2(2ε)2||S>2ε ||Si j

>2ε − 2Cε,
2ε2||S>ε ||Si j

>ε>2ε
.

Following Lilly’s [8] notation we define Li j and Mi j as follows:

Li j = ui>εu j>ε>2ε − ui>ε>2ε
u j>ε>2ε

, (17)

Mi j,
2ε2 = 2||S>ε ||Si j

>ε>2ε
− 8||S>2ε ||Si j

>2ε
, (18)



10 D. E. Goldstein et al.

where Li j is thewavelet-filtered analog of the Leonard stress. This results in an overdetermined
system of equations that can be used to find Cε,

2ε2

Cε,
2ε2Mi j = Li j . (19)

Following Lilly’s [8] least square solution to this system, we obtain the following expression
for the local Smagorinsky model coefficient:

Cε,
2ε2 = Li j Mi j

Mi j Mi j
. (20)

With this model formulationCε,
2ε2 can be locally positive or negative, which allows for local

backscatter of energy to resolved scales. In practice it has been found that locally negative
values of Cε,

2ε2 cause numerical instabilities in SCALES, as in LES, so we average over
homogeneous directions:

Cε,
2ε2 = 〈Li j Mi j 〉

〈Mi j Mi j 〉
, (21)

where 〈·〉 denotes volume averaging.

4.2 Model scaling

If we assume that, with an appropriate value forα, the eddy viscositymodel (10)–(12) provides
the right dissipation it is easy to show

2Cε,
2εα = −

〈
τi j Si j

>ε 〉
〈
||S>ε ||Si j

>εSi j
>ε 〉 , (22)

where α is the scaling law and , is taken to be constant over the domain. The correct scaling
is determined from a priori testing, using the isotropic turbulence field F256. In figure 4 the
scaling of−〈τi j Si j

>ε〉/〈||S>ε ||Si j
>εSi j

>ε〉 is shown over a range of ε that corresponds to a field
compression over the range of 78.5–99.95%. The slope of the curve in log–log axis determines
the appropriate ε scaling. As can be seen, the quantity 〈τi j Si j

>ε〉/〈||S>ε ||Si j
>εSi j

>ε〉 scales
roughly as ε2 for a wide range of compressions. However, some deviation from this scaling
is observed above 99.4% compression. Based on this a priori test of the scaling, the new
dynamic Smagorinsky-type eddy viscosity model (10) has been implemented. The results of
simulations with this new SGS model are presented in section 5 below.

5. Results

To validate the CVS and the SCALES methods, numerical simulations of decaying incom-
pressible isotropic turbulence are considered. For this work the incompressible Navier–Stokes
equations (7)–(9) are solved with the DAWC solver. Continuity (9) is enforced using a multi-
step pressure correction time integration method [38]. An adaptive wavelet collocation mul-
tilevel elliptic solver [37] is used in solving the Poisson equation for pressure at each time
step.
Results of decaying incompressible isotropic turbulencewith initial Reλ = 72 are presented.

The simulations were initialized with a 1283 forced isotropic turbulence DNS field from a
de-aliased pseudo-spectral code. The DNS simulation was run using a resolution of 1283 and
had an initial eddy-turnover time of approximately 0.1. The spectral content of the initial DNS
field is fully resolved by doubling the non-adaptive field resolution to 2563 in the simulations.
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Figure 4. τi j Si j
>ε

/(||S>ε ||Si j
>ε Si j

>ε ) vs. relative wavelet threshold parameter ε, using velocity wavelet filtering,
without adjacent zone (———-) for field F256. The dashed line is ε2. The L∞ WTF norm was used for this a
priori test. This range of ε corresponds to a field compression over the range of 78.5–99.95%. It can be seen that
τi j Si j

>ε
/(||S>ε ||Si j

>ε Si j
>ε ) scales roughly as ε2. The scaling begins to deviate at ε = 0.001, which corresponds to

99.4% compression.

This is required because theDAWC solver uses finite differences, which cannot resolve the full
spectral content of the spectral DNS field at the original resolution. The results are compared
to a full DNS performed with the de-aliased pseudo-spectral code used to generate the initial
DNS field.
In running these simulations it has been determined that a more ‘complete’ adjacent zone

than the partial adjacent zone described in section 3 is needed to limit the numerical and
aliasing error at the high field compression used in SCALES. In the original adjacent zone,
neighboring points on the level above, the current level and the level below are added around
each active wavelet. From this point on, we will refer to this as a partial adjacent zone.
This partial adjacent zone is used in the CVS simulations presented in section 5.1. For the
high compression SCALES simulations presented in section 5.2, we have defined a complete
adjacent zone that, in addition to the immediate neighbors, adds the diagonal neighbors.
For all SCALES and CVS results in this work, the L2 WTF norm was used in the coupled

wavelet filtering for grid adaptation based on the velocity field and for grid and test filtering
in the model. Tests were also run using L∞ WTF norm, but it was determined that this was
considerably noisier due to temporal intermittency.

5.1 CVS

CVS simulations of decaying incompressible isotropic turbulence have been performed with
no SGS stress model to validate the method’s ability to dynamically resolve and track the
coherent energetic eddies in a turbulent flow. A partial adjacent zone has been used for these
simulations. In figures 5–8, the results of CVS and SCALES with no SGS stress model,
for brevity called SCALESno−mdl, are compared to DNS. It can be seen in figure 5 that the
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Figure 5. Energy decay for CaseReλ=72 with partial adjacent zone for CVS with no SGSmodel ( ), SCALES
with no SGS model ( ) and for comparison DNS ( ). Large eddy turn over time for the initial DNS field
is approximately 0.1. Two stations are shown at which energy spectra will be presented.

energy decay for CVS is nearly identical to the DNS. The SCALESno−mdl case is seen to
be under dissipative. Figure 6 shows the field compression for CVS and SCALESno−mdl.
The compression stated is always with respect to the maximum field resolution, which in
this case is 2563. It can be seen that CVS is able to reproduce the DNS energy decay with
a compression ranging from a minimum of 98.2–99.8% as the flow becomes laminar. This
means that a maximum of 1.8% of the total modes are resolved in the CVS simulation. This
variation of field compression over the course of the simulation reflects the decreasing amount
of small-scale structures as the turbulence intensity decreases. In these simulations ε is set
to 0.15 for CVS and 0.5 for SCALESno−mdl. The value of ε for CVS was chosen iteratively
to find the maximum value for which the energy decay over the simulation period closely
matched that obtained with the DNS. For comparison CVS simulations (not shown) with
Reλ = 48 have been run. For these Reλ = 48 simulations, 6% of the modes were required
to match the DNS energy decay. This trend of compression scaling between Reλ = 48 and

Figure 6. Field compression for CaseReλ=72 with partial adjacent zone for CVS with no SGS model ( ) and
SCALES with no SGS model ( ).
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Figure 7. Total resolved viscous dissipation (−νSi j Si j ) for CaseReλ=72 with partial adjacent zone for CVS with no
SGS model ( ), SCALES with no SGS model ( ) and for comparison DNS ( ).

72 is believed to be indicative of the expected scaling of CVS compression with Reynolds
number. More data points are needed at higher Reynolds number to validate this possible level
of scaling. In this CVS simulation the skewness of the first velocity derivative is maintained
to within 10% of the DNS value, which reflects the fact that the CVS is resolving most of
the DNS energy dissipation. In figure 7 we see that, after an initial period where the small
scales are being recovered from the initial field projection, the total viscous dissipation of
CVS closely matches the DNS. This confirms the hypothesis that with CVS the total SGS
dissipation is minimal. This also indicates that the CVS is capturing the coherent structures,
allowing the CVS simulation to at least partially resolve the energy cascade over all active
wavenumbers. In figure 8 the energy spectra for CVS, SCALESno−mdl and DNS are shown for
two stations. The first station is at t = 0.08 and the second station is at t = 0.16. These stations
are also shown on figure 5. The CVS spectra closely matches that of the unfiltered DNS at both

Figure 8. Energy spectra for CaseReλ=72 with partial adjacent zone for CVSwith no SGSmodel ( ), SCALES
with no SGS model ( ) and for comparison DNS ( ), at time t = 0.08 (left) and 0.16 (right). A k−5/3

straight dashed black line is shown to indicate the inertial range.
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Figure 9. Energy decay for CaseReλ=72 with complete adjacent zone for SCALES with dynamic SGS model
( ), SCALESwith SGSmodel coefficientCε,

2ε2 = 0.0001 ( ), LESwith dynamic SGSmodel ( )
and for comparison DNS ( ). Large eddy turn over time for the initial DNS field is approximately 0.1. Two
stations are shown at which energy spectra will be presented.

stations. Notice how with CVS the full energy spectra is closely resolved over the full spectral
range. The spectra for the SCALESno−mdl case is seen to build up energy due to lack of SGS
dissipation.

5.2 SCALES constant coefficient and dynamic SGS stress model

SCALES simulations have been performed with the constant coefficient Smagorinsky eddy
viscosity model, equation (10), and the new dynamic Smagorinsky eddy viscosity SGS stress
model described in section 4.1. The model coefficient (Cε,

2ε2 = 0.0001) for the SCALESCs
case was chosen to best match the DNS results. For the SCALESdyn case the volume averaged

Figure 10. Field compression for CaseReλ=72 with complete adjacent zone for SCALES with dynamic SGS model
( ), SCALES with SGS model coefficient Cε,

2ε2 = 0.0001 ( ) and LES with dynamic SGS model
( ). The complete interpretation of the LES compression based on the 3/2 rule is shown as small circles.
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Figure 11. Dynamic SGSmodel coefficient for CaseReλ=72 with complete adjacent zone for SCALESwith dynamic
SGS model, Cε,

2ε2 ( ), SCALES with SGS model coefficient Cε,
2ε2 = 0.0001 ( ) and LES with a

classical dynamic SGS model, Cs.2( ).

version of the dynamic model coefficient is used (21). These SCALES simulations, hereafter
for brevity called SCALESCs and SCALESdyn respectively, are compared to DNS and LES
simulations. For both SCALESCs and SCALESdyn, cases ε is set to 0.5. The LES simula-
tion is performed in the DAWC solver with a regular 643 grid, using the classical dynamic
Smagorinsky model. The simulation is de-aliased by performing a wavelet transform on the
velocity field and zeroing the highest level wavelet coefficients, thus resulting in a 323 solution
at the end of the time step. This is more expensive than the 3/2 rule used in pseudo-spectral
simulations. Figure 9 shows that the resolved kinetic energy decay for the SCALESdyn and
SCALESCs cases closely matches that of the DNS. The LES deviates slightly more from
the DNS. Note that because of the similarity of the SCALESdyn and SCALESCs results, the
lines are difficult to distinguish. The SCALESdyn and SCALESCs results lines are those just
below the DNS line and above the LES line. In figure 10 the compression for the SCALESdyn,

Figure 12. Resolved and SGS dissipation for (left) SCALESwith the dynamicmodel and (right) SCALESwith SGS
model coefficient Cε,

2ε2 = 0.0001, for CaseReλ=72 with complete adjacent zone. On both plots the DNS viscous
dissipation is shown ( ) with the viscous dissipation ( ), SGS dissipation ( ) and viscous+SGS
dissipation ( ).
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Figure 13. Resolved and SGS dissipation for LES with the dynamic model for CaseReλ=72. The DNS viscous
dissipation is shown ( ) with the viscous dissipation ( ), SGS dissipation ( ) and viscous + SGS
dissipation ( ).

SCALESCs and LES cases are shown. If we consider the overhead of the modes used for
de-aliasing, the LES may be considered to have a compression of 98.44%. The modes used
for de-aliasing in LES can be considered as analogous to the adjacent zone in SCALES, so for
a realistic comparison we can consider that if the LES was performed in a spectral code, using
the 3/2 rule for de-aliasing, the effective compression would be 99.34% (shown in figure 10
as small circles). This is 0.35% higher than the initial compression of the SCALESdyn sim-
ulation. However, as the SCALES simulations progress the adaptive compression increases,
surpassing that of the LES. Therefore, it can be said that the SCALESdyn and SCALESCs
simulations were able to capture the energy decay with a compression similar to a de-aliased
LES simulation. In figure 11 we see that the dynamic model coefficient for SCALESdyn is
more variable in comparison to the LES case. We conjecture that this variability could reflect

Figure 14. Energy spectra for CaseReλ=72 with complete adjacent zone for LESwith dynamic SGSmodel ( )
at time t = 0.08 (left) and 0.16 (right). For comparison the DNS ( ) and filtered DNS ( ) are shown. A k−5/3

straight dashed black line is shown to indicate the inertial range.
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Figure 15. Energy spectra for CaseReλ=72 with complete adjacent zone for SCALES with SGS model coefficient
Cε,

2ε2 = 0.0001 ( ) at time t = 0.08 (left) and 0.16 (right). For comparison the DNS ( ) and filtered
DNS ( ) are shown. A k−5/3 straight dashed black line is shown to indicate the inertial range.

the sensitivity of the SCALESdyn model to actual localized events, such as energetic coherent
vortex interactions that cause local high resolved stresses. These events must be included to
properly characterize the instantaneous SGS dissipation. Further research is needed to under-
stand this phenomenon. In figures 12 and 13 the viscous and SGS dissipations are presented
for SCALESdyn, SCALESCs and LES. The variability of the SCALESdyn model coefficient is
reflected in the SCALESdyn SGS dissipation. In figures 14–16 the energy spectra for the two
stations shown in figure 9 are compared to the appropriately filtered DNS for the SCALESdyn,
SCALESCs and LES cases. In comparison to LES, the DNS is filtered using a spherical Fourier
cutoff filter equivalent to the maximum wave number resolved in the LES calculation. In the
case of the SCALES simulations the appropriate DNS filtering for comparison is a wavelet

Figure 16. Energy spectra for CaseReλ=72 with complete adjacent zone for SCALES with dynamic SGS model
( ) at time t = 0.08 (left) and 0.16 (right). For comparison the DNS ( ) and filtered DNS ( ) are
shown. A k−5/3 straight dashed black line is shown to indicate the inertial range.
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thresholding filter with equivalent threshold parameter to that used in the SCALES simula-
tions. It can be seen that while there is reasonable agreement for the LES case (figure 14),
the agreement with the filtered DNS is significantly improved for the SCALESCs (figure 15)
and SCALESdyn cases (figure 16). At both stations, in the dissipative range, the SCALESCs
and SCALESdyn simulations reproduce more of the high wave number energy. At the second
station it can be seen in the inertial range that the LES has dissipated slightly more then the
SCALESCs and SCALESdyn cases. It is of particular interest to note that the wavelet filtered
DNS in figures 15 and 16 are closer to the full DNS spectra over the full spectral range. Thus,
the ability of SCALES to closely recover the filtered DNS results in a solution that has a
spectral content close to the original unfiltered DNS solution over the whole DNS spectral
range.

6. Conclusions

In this work dynamic simulation results of decaying incompressible isotropic turbulence using
a new methodology for simulating turbulent flows called SCALES [2] are presented. This
method combines the strengths of CVS and LES. The SCALES methodology uses the idea
of WTF of the turbulent field as in CVS [1], but in SCALES the wavelet filter threshold
is increased such that only the most energetic part of the coherent vortices is simulated in
the resolved field. This enables the method to attain high rates of compression and makes it
appropriate for simulating high Reynolds number flow. Indeed, the high compression achieved
with SCALES should be evenmore advantageous at high Reynolds numbers due to turbulence
intermittency.
In this research, the CVS and SCALES methods have been implemented using a DAWC

method [9, 10]. The DAWCmethod is ideal for WDNS, CVS and SCALES since it combines
the resolution of the energetic coherent modes in a turbulent flow with the simulation of
their temporal evolution [2, 9–11]. A new dynamic SGS stress modeling procedure has been
introduced based on a variation of the classical Smagorinsky [5] model. In our wavelet filtered
version of the model, the scaling of the eddy viscosity is based on ε2 (where ε is the wavelet
filtering threshold parameter) instead of the standard scaling .̄2 (where. is the filter width).
In this new model a global characteristic length scale is introduced, which does not need to
be specified, since it is absorbed by the dynamic procedure. The use of a local characteristic
length scale, implicitly defined by the wavelet thresholding filter, is the subject of ongoing
research.Apriori results using forced incompressible isotropic turbulence have been presented
that show this scaling holds for a wide range of compressions. The new dynamic procedure
is similar in spirit to the classical dynamic procedure of Germano’s [6–8], except that a new
scaling law, based on ε2, is used.
Dynamic simulations of SCALES, CVS and LES of decaying incompressible isotropic

turbulence with a Taylor Reynolds number of Reλ = 72 have been compared to DNS results
to validate the SCALES and CVS methods with the DAWC solver. It has been shown that
the adaptive CVS simulations closely match the DNS energy decay with only 1.8% of the
modes of the DNS. We anticipate that CVS will work for even higher compression at higher
Reynolds number flows due to increased flow intermittency. Dynamic SCALES simulations
with the new dynamic modeling procedure use a complete adjacent zone (including diagonal
neighbors) to cope with high compressions. The SCALES results with the dynamic model are
shown to reproduce the DNS energy decay with only 1% of the DNS modes. The moderate
increase in compression over the CVS calculations was due to the increased adjacent zone
used in the SCALES calculations. It is anticipated that in higher Reynolds number simulations
the cost of this complete adjacent zone will become minimal due to higher compression and
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increased intermittency of the coherent structures. These SCALES results are also compared
to fully de-aliased LES calculations. The SCALES results moderately outperformed those of
the LES at a similar field compression.
While it is expected that for Reynolds numbers higher than the ones considered in this study

the reducedSGSdissipation and increased incoherency of theSCALESSGSstresswill provide
significant improvement in SGSmodel accuracy, this is not the greatest potential benefit of the
SCALESmethod. Flows of engineering and scientific interest occur in complex domains with
large temporal and spatial variation in turbulence intensity. Therefore, an efficient simulation
method must be capable of dynamically adapting the resolution over a wide range of local
Reynolds numbers, often including large regions of laminar flow. A good example of this is
flow over an aircraft, where the flow ranges from nearly laminar in the far field to intensely
turbulent near the control surfaces. Another area of great potential benefit is in the simulation
of fluid–structure interaction. In this case there is often no way to know in advance what
sort of computational grid is needed since the structure can move or deform in unpredictable
ways. Therefore, the trade-off between costly grid refinement over regions of potentially
high turbulence intensity versus the loss of simulation accuracy must be balanced. With the
SCALES methodology the collocation grid automatically adapts to the local flow at each time
step in order to maintain a specified a priori accuracy. The required accuracy is specified with
the wavelet filter threshold parameter (ε). For these reasons even if the SCALESmethodology
can do no better than match the cost of classical LES methods in unit test problems, like the
ones conducted in this work, there is strong evidence to believe that SCALES will outperform
classical LES in many complex real world flows at high Reynolds numbers. However, to
realize the benefits of SCALES in such highly non-homogenous flows in complex geometries,
a local SGS model and efficient data structures are required.
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