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1. Cartesian components of motion from radial velocities

The normal meteorological coordinate system consists of northward distance y, eastward distance x, and
upward distance or height z above mean sea level of a curved earth. The velocity components corresponding
to these coordinates are v, u, and w. All distances are in kilometers, and all velocities are in meters per
second. The mapping to height above mean sea level is made in the interpolation (SPRINT) and analysis
(CEDRIC) software packages, and it will not be explicitly listed here. Usually Doppler radars detect particles
so there is an additional component of motion, fallspeed of particles in still air, to be considered. The normal
convention of positive radial velocity away from the radar is used.

This mathematical formulation comes from the lead author’s unpublished notes that have been accu-
mulated over the years, and parallels the formulations presented by Armijo (1969), Bohne and Srivastava
(1975), Ray et al. (1978) and Ray et al. (1980).

a. Mathematical formulation

The projection of particle motion (û, v̂, ŵ, ŵt) along the Doppler radar radial direction is

v̂r = û sin a cos e + v̂ cos a cos e + ( ̂w + wt) sin e, (1)

where a and e are the azimuth and elevation angles of the beam. The azimuth angle is measured clockwise
from true north (the positive y axis), and the elevation angle is measured upward from the horizontal plane
through the radar. The circumflex indicates an average value within the radar sample volume defined by
pulse length and beamwidth. Two or more radar measurements are usually combined along with the mass
continuity equation to obtain the unknown components of air motion (û, v̂, ŵ). In the case of only two radar
measurements additional information about the precipitation fallspeed, ŵt, is needed to obtain a solution
for the four unknown components of motion. A similar procedure is followed with three or more radar
measurements to separate the vertical air motion from the precipitation fallspeed.

It is more convenient to express the radial velocity in terms of Cartesian coordinates since solutions are
obtained after interpolation of the radar measurements at locations in spherical coordinates (r, a, e). Further,
if the radar echo (storm) is moving with components (U, V ), and the radial velocity samples are taken at
time t + ∆t, the above equation is replaced with (adapted from Gal-Chen, 1982)

[v̂rr]t+∆t

[r]t
=

[
û

(
x− xo + U∆t

r

)
+ v̂

(
y − yo + V ∆t

r

)
+ Ŵ

(
z − zo

r

)]

t

, (2)

for a radar at (xo, yo, zo) with slant range

r =
[
(x− xo)2 + (y − yo)2 + (z − zo)2]1/2.

Radial velocities are first multiplied by slant ranges from the radar at the sample time t + ∆t. This field
is then advected at the storm motion to new locations, where it is divided by slant ranges at the synthesis
time t. The coefficients of û and v̂ on the right hand side of (2) have been modified to account for a change
in radar pointing direction.

Appendix F-1



For M radars, the linear system of equations to be solved at time t is

ûam + v̂bm + Ŵ cm = dm ; m = 1, 2, 3, . . . , (3)

where (am, bm, cm) are the coefficients and dm is the term involving radial velocity on left hand side in (2),
a set for each radar. In the method of least-squares, the error equation

Q = ΣE2
m = Σ(ûam + v̂bm + Ŵ cm − dm)2 (4)

is minimized with respect to the unknown quantities (û, v̂ , Ŵ ). The resulting normal equations to be solved
for three or two unknown quantities are:

ûΣamam + v̂Σambm + ŴΣamcm = Σamdm

ûΣbmam + v̂Σbmbm + ŴΣbmcm = Σbmdm

ûΣcmam + v̂Σcmbm + ŴΣcmcm = Σcmdm,

(5)

or
ûΣamam + v̂Σambm = Σamdm − ŴΣamcm

ûΣambm + v̂Σbmbm = Σbmdm − ŴΣbmcm.
(6)

For the linear system of three equations

û A1 + v̂ B1 + ŴC1 = D1

û A2 + v̂ B2 + ŴC2 = D2

û A3 + v̂ B3 + ŴC3 = D3,

(7)

the solutions are:

û = D−1
[
D1(B2C3 −B3C2)−D2(B1C3 −B3C1) + D3(B1C2 −B2C1)

]

v̂ = D−1
[
D1(A3C2 −A2C3)−D2(A3C1 −A1C3) + D3(A2C1 −A1C2)

]

Ŵ = D−1
[
D1(A2B3 −A3B2)−D2(A1B3 −A3B1) + D3(A1B2 −A2B1)

]
,

(8)

where the determinant of coefficients

D = A1(B2C3 −B3C2)−A2(B1C3 −B3C1) + A3(B1C2 −B2C1).

The vertical component Ŵ can be separated into air motion and fallspeed either by using (û, v̂) in the mass
continuity equation to obtain ŵ or by calculating fallspeed from radar reflectivity factor (or some other
means).

For the system of two equations

û A1 + v̂ B1 = D1 − ŴC1

û A2 + v̂ B2 = D2 − ŴC2,
(9)

the solutions are
û =

D1B2 −D2B1

D
+ Ŵ

B1C2 −B2C1

D
= u′ + εuŴ

v̂ =
D2A1 −D1A2

D
+ Ŵ

A2C1 −A1C2

D
= v′ + εvŴ ,

(10)

where the determinant of coefficients
D = A1B2 −A2B1.
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The quantities û and v̂ depend not only on the radar measurements through (u′, v′) but also on an unknown
Ŵ . The so-called over-determined, dual-Doppler approximations (e.g., Kessinger et al. 1987) use (u′, v′) as
estimates of (û, v̂). Since εu and εv depend only on geometry, the impact of neglecting the vertical component
in (10) can be assessed if the bounds of Ŵ can be estimated.

It is clear from the preceding equations that the solutions for (û, v̂, Ŵ ) are geometrically weighted
sums of the interpolated radial velocities. Since the different radar radial velocity measurement errors are
independent (the error in a particular radar measurement does not depend on other radar measurement
errors even though the measurements themselves are related), the variance of the solutions given by (8) and
(10) can be written as sums of radial velocity variance, weighted by the square of the geometric terms. From
(8),

σ2(û) = Σg2
umσ2(v̂m)

σ2(v̂) = Σg2
vmσ2(v̂m)

σ2(Ŵ ) = Σg2
Wmσ2(v̂m),

(11)

which, if all radial velocity variances σ2(v̂r) are equal, can be rewritten as normalized variances

σ2
N (û) =

σ2(û)
σ2(v̂r)

= Σg2
um

σ2
N (v̂) =

σ2(v̂)
σ2(v̂r)

= Σg2
vm

σ2
N (Ŵ ) =

σ2(Ŵ )
σ2(v̂r)

= Σg2
Wm.

(12)

Likewise, from (10)

σ2
N (u′) =

σ2(u′)
σ2(v̂r)

= Σg2
um

σ2
N (v′) =

σ2(v′)
σ2(v̂r)

= Σg2
vm.

(13)

These normalized variances can be used to estimate the impact of geometry on the transformation from
non-orthogonal radial velocities to the orthogonal Cartesian components. This geometric transformation is
such that errors in the solutions generally exceed errors in the measured radial velocities.

Once horizontal wind components are found, the mass continuity equation can be used to obtain the
vertical component of air motion. There are two ways to proceed, the first uses

∂(ρw)
∂z

+
∂(ρu)
∂x

+
∂(ρv)
∂y

= 0,

so that ∫ zk+1

zk

∂(ρw)
∂z

dz = −
∫ zk+1

zk

ρ

(
∂u

∂x
+

∂v

∂y

)
dz

or, in finite difference form,

(ρw)c = (ρw)p − δ∆z

[
ρ

(
∂u

∂x
+

∂v

∂y

)]

p−c

, (14)

where

δ =
{

+1, for upward integration
−1, for downward integration.

The overbar represents an average of divergence values from the previous (p) and current (c) levels. The
boundary condition (ρw)b must be specified at every (x, y, zb) at the bottom of the domain if integrating
upward or at the top of the domain if integrating downward. This can be done by setting the boundary value
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to a constant, by using a fraction of the first level divergence times a height increment, or by constructing a
field using options such as found in the FUNCTION command. Equation (14) can also be integrated using
a variational scheme where both upper and lower boundary conditions are specified within each integration
column. Vertical motions rather than density-weighted values are output, where the user specifies the density
weighting (an exponential form is provided, but another form can be constructed with the FUNCTION
command).

An alternative path is available that is more mathematically rigorous when (u, v) come from the two-
equation solution. The first step is to correct (u′, v′) for precipitation fallspeed using (10),

u2 = u′ + εuŵt

v2 = v′ + εvŵt,

then substitute
u = u2 + εuw

v = v2 + εvw

into the mass continuity equation and integrate. The proper form of the mass continuity equation becomes

∂(ρw)
∂z

+
∂(ρu2)

∂x
+

∂(ρv2)
∂y

+
∂(ρεuw)

∂x
+

∂(ρεvw)
∂y

= 0.

This partial differential equation can no longer be solved as done in (14) since the desired vertical component
appears in the two terms involving horizontal derivatives. These terms cause the solutions for w at adjacent
(x, y) grid points to be coupled. In finite difference form, the mass continuity equation becomes

(ρw)c︸ ︷︷ ︸
A

= (ρw)p︸ ︷︷ ︸
B

− δ∆z

[
ρ

(
∂u2

∂x
+

∂v2

∂y

)]

p−c︸ ︷︷ ︸
C

− δ∆z

[
∂(ρεuw)

∂x
+

∂(ρεvw)
∂y

]

p−c︸ ︷︷ ︸
D

. (15a)

Term D consists of two parts:

− δ∆z

2

[
∂(ρεuw)

∂x
+

∂(ρεvw)
∂y

]

p︸ ︷︷ ︸
D1

− δ∆z

2

[
∂(ρεuw)

∂x
+

∂(ρεvw)
∂y

]

c︸ ︷︷ ︸
D2

, (15b)

where D1 is a function of horizontal derivatives at the previous level and D2 is a function of horizontal
derivatives at the current level of integration.

To understand this integration scheme, start at a level where boundary conditions have first been applied.
The horizontal divergence in (15a) is adjusted in the manner dictated by term D1, and (ρw)c is estimated
by integrating one level in the vertical direction. These first estimates of vertical motion at the current level
are then multiplied by the (εu, εv) geometric factors and differentiated according to D2 in (15b) to readjust
the layer convergence, and (15a) is reintegrated. Since only A and D2 change, for the nth iteration

An = B + C + D1 + D2n−1,

which proceeds from the previous to current levels until A in (15a) stops changing. The change in A is
calculated at each grid point, and these differences are globally averaged for comparison with εo, a parameter
set by the user:

| (ρw)c,n − (ρw)c,n−1 |≤ εo.

Once this condition is satisfied, iterative integration is done from the current to the next level and so on
until all levels have been integrated.
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b. Synthesis tests

The synthesis in CEDRIC outputs several fields, depending on whether the three-equation or the two-
equation solution is selected:

U: component of motion in the x direction, either û in (8) or u′ in (10),

V: component of motion in the y direction, either v̂ in (8) or v′ in (10),

W: upward component of motion, Ŵ in (8),

USTD: normalized standard deviation, square root of normalized u-variance in (12) or (13),

VSTD: normalized standard deviation, square root of normalized v-variance in (12) or (13),

WSTD: normalized standard deviation, square root of normalized W-variance in (12), available only
when three-equation solution is selected,

EWU: geometric factor that multiplies vertical component Ŵ in (10), available only when two-
equation solution is selected,

EWV: geometric factor that multiplies vertical component Ŵ in (10), available only when two-
equation solution is selected.

The user specifies input parameters DTEST1, DTEST2, DTEST3 against which the above geometric
parameters are tested. Selection of the two- or three- equation solution along with these test values determines
the synthesis outcome at each (x, y, z) grid point. If only one radial velocity is present, no solution exists
and all output fields are set to a bad data flag.

Two-equation solution (the number of radars, M ≥2):

if the magnitudes of (EWU,EWV ) are both less than DTEST1,

and (USTD, V STD) are both less than DTEST2,

the output (U, V ) are given by (u′, v′) in (10).

Three-equation solution is selected (the number of radars, M ≥3):

if (USTD, V STD) are both less than DTEST2,

the output (U, V ) are given by (û, v̂) in (8),

and if WSTD is less than DTEST3,

the output W is given by Ŵ in (8).

If only two radial velocities are present at the grid point, the procedure follows the one for a
two-equation solution.

2. Coplane components of motion from radial velocities

Lhermitte and Miller (1972) first introduced COPLAN radar scanning where measurements are taken
in a cylindrical coordinate system that is more natural for two radars (Fig. 1). One axis is along the baseline
joining the two radars, another is perpendicular to the baseline, and the third is the coplane (dihedral) angle
associated with a series of planes defined by the two radar beams and the horizontal plane passing through
the radars. This coordinate system simplifies the mathematical formulation, and it is the same one used
by Armijo (1969) in his transformation that was needed to solve the mass continuity equation for vertical
motion. Miller and Strauch (1974) expanded on the coplane coordinate concept, including a detailed analysis
of the errors involved in the synthesis. Doviak et al. (1976) also dealt with error analysis, and they included
errors associated with the integration of the mass continuity equation. A series of papers by French scientists
(Testud and Chong; Chong et al.; and Chong and Testud, 1983) revisited all aspects of coplane analysis,
including interpolation, synthesis, and integration of the mass continuity equation.
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a. Mathematical formulation

When the original radar sampling process is done in coplanes formed by the beams from two radars, a
procedure similar to the one for the two-equation solution is followed. If only two radar measurements are
available, rewrite (1) as

û sin a′1 + v̂ cos a′1 =
v̂1

cos e1
− Ŵ tan e1

û sin a′2 + v̂ cos a′2 =
v̂2

cos e2
− Ŵ tan e2,

(16)

where the angle a′ = a− ao is measured from the baseline (at azimuth angle ao) that joins the two radars.
Equation (16) has the solution

û = D−1
[ v̂1 cos a′2

cos e1
− v̂2 cos a′1

cos e2

]− Ŵ tanα

v̂ = D−1
[ v̂2 sin a′1

cos e2
− v̂1 sin a′2

cos e1

]
,

(17)

where D = sin(a′1 − a′2) = sin(a1 − a2), and the coplane relations (Lhermitte and Miller, 1970)

tan α =
tan ei

sin a′i
; i = 1, 2 (18)

have been used. The quantity α is the dihedral angle between the coplane defined by the two intersecting
radar beams and the horizontal plane passing through the two radar locations. The radar beam is steered
in the elevation angle direction as it is rotated in azimuth for a fixed coplane angle according to (18).
Measurements are taken at range-azimuth locations in a series of these planes, with α increasing upwards
from the horizontal plane of the two radars.

An alternative to (17) that will uncouple the vertical component from û is to introduce coplane coordi-
nates

xc = (x2 + z2)1/2

yc = y

α = Tan−1(z/x),

and solve for components of the motion within coplanes:

ûc(xc, yc) =
r1v̂1(yc − yc1)− r2v̂2(yc − yc2)

2dxc

v̂c(xc, yc) =
r2v̂2 − r1v̂1

2d
,

(19)

where 2d is the distance between the two radars located at (0, yc1) and (0, yc2). The coplane coordinates
xc and yc are measured perpendicular and parallel to the radar baseline. Since the component of motion
perpendicular to the radar beam is not measured by the radar, the component normal to the coplanes does
not appear in (19). In coplanes, distances from the radars are

r1 =
[
x2

c + (yc − yc1)2
]1/2

r2 =
[
x2

c + (yc + yc2)2
]1/2

.

Normalized variances within each coplane are similar in form to the ones for Cartesian components in (13).
The two-equation Cartesian solution (in a relative coordinate system with y along the two-radar baseline)
and the coplane solution give identical results in the horizontal plane (α = 0◦).

After ûc is corrected for fallspeed, the coplane components of air motion are:

u′c = ûc − ŵt sin α

v′c = v̂c.
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These components are integrated in the mass continuity equation written in the form

1
xc

∂(ρw′c)
∂α

+
1
xc

∂

∂xc
(ρxcu

′
c) +

∂

∂yc
(ρv′c) = 0 (20)

to obtain the component normal to the coplanes. A finite difference form of (20) similar to (14) is used, with
an exponential density weighting provided. Once these coplane components are calculated, horizontal wind
components are obtained:

û = u′c cos α− w′c sin α

v̂ = v′c
ŵ = u′c sin α + w′c cosα.

(21)

The velocity transformation in (21) is done when the winds at coplane coordinates are interpolated to
Cartesian coordinates with the REMAP command.

b. Synthesis tests

For coplane synthesis, CEDRIC outputs a subset of fields:

U: component of motion perpendicular to the baseline, ûc in (19)

V: component of motion parallel to the baseline, v̂c in (19)

USTD: normalized standard deviation, similar to the square root of normalized u-variance in (13),

VSTD: normalized standard deviation, similar to the square root of normalized v-variance in (13),

The user specifies input parameters DTEST2 and DTEST3 against which the above geometric pa-
rameters are tested. Selection of coplane coordinate option (housekeeping words are tested or the COORD
command is used) along with these test values determines the synthesis outcome at each (xc, yc, c) grid point.
If only one radial velocity is present, no solution exists and all output fields are set to a bad data flag.

Two-radar coplane solution (the number of radars, M = 2):

if (USTD, V STD) are both less than DTEST2,

the output (U, V ) are given by (uc, vc) in (19).

(EWU,EWV ) are zero in coplane coordinates so they are not output.

The following steps are taken for multiple-Doppler radar wind synthesis:

1. Interpolate the radar measurements using the SPRINT software package. If measurements were
originally taken in the coplane coordinate system, interpolation within these coplanes is selected.
If measurements were taken in the normal radar spherical coordinate system, interpolation to
Cartesian coordinates should be done. There is little advantage in interpolating to coplanes if the
data were not taken in this coordinate system. The SPRINT package has no provision for such
interpolation; however, the REORDER package of ATD/RDP does.

2. Select the appropriate coordinate system synthesis, integration and interpolation path in CEDRIC.
This is done automatically if the appropriate housekeeping words are correctly set. Otherwise, the
user must invoke the COORD command to force the correct choice of mathematical formulation.

3. Specify the necessary parameters in the SYNTHES command in CEDRIC. The three-equation
solution fields come from (8) and (12). The Cartesian synthesis allows for an over-determined, two-
equation solution with the various fields given by (10) and (13). For coplane synthesis at coplane
coordinates, only two radars are allowed, and the solutions come from (19).

4. Invoke the CONVERGE command to compute horizontal or coplane convergence, the negative of
divergence of the horizontal winds in (8) or (10) or the coplane winds in (19).
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5. Specify the necessary parameters in the INTEGR command for Cartesian (14) or coplane (20)
integration. If the user wishes to use the iterative integration of (15), the MASS2 command is
used.
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