
John Dennis, Brian Dobbins, Allison Baker, Youngsung Kim,
Jian Sun

Transforming an observational assimilation
application on CPU and GPU

June 1, 2021
NHUG meeting

Airborne Phased Array Radar (APAR)

Optimizing SAMURAI

● Airborne precipitation radar to replace retired ELDORA aircraft
● Science drivers

○ Hurricanes and tropical cyclones
○ Continental convection
○ Extreme precipitation events
○ Arctic studies
○ Cloud, aerosol, and radiation studies

Airborne Phased Array Radar (APAR), Wen-Chau Lee, Vanda Grubisic, Lou Lussier, https://www.ofcm.gov/meetings/TCORF/ihc20/session_3/3-7_lee.pdf

Spline Analysis at Mesoscale Utilizing Radar and
Aircraft Instrumentation (SAMURAI)

Bell et. al 2012

● Developed by M. Bell @ CSU
● Consumes Airborne observations doppler
● Generates variational analysis of seven variables [wind, precipitation,

vorticity, etc]
● Variational analysis product can be used by NWP
● C++, OpenMP based parallelism

SAMURAI optimization effort

• Funded by Earth Observing Laboratory (EOL) through a NOAA grant
• Original version of SAMURAI takes 2-3 days to perform analysis (single

node) for test datasets
• Anticipated APAR generate data ~16x larger
• What can be done to accelerate the processing of observations?
• Is this application suitable for GPUs?

Goal: Run analysis in less than 6 hours

SAMURAI computational characteristics

• Matrix-free solver implemented by several operators
• Main data-structures

– 3D physical grid (eg: 241x241x33)
– Observation matrix H [can be quite large]

• Computational routines
– NCG or Truncated-Newton solver
– Pencil calculations on physical grid

• SAtransform
• SCtransform

– Multiply by H: Htransform
– Multiply by HT: calcHTransform

SAMURAI performance issues

• Inefficient indexing and limited thread parallelism over physical grid
– SAtransform
– SCtransform

• Limited thread parallelism over HT operator
– calcHTranpose

• Non-unit stride for observation vector
– Htransform
– calcHTranpose

• Numerical inefficient Nonlinear Conjugate Gradient solver
• No threading within existing solver

Big Picture:

● minimize cost (objective) function: J(x)
● by solving for gradient: ▽J(x) = 0
● nonlinear optimization: at each iteration, “step” closer to the solution in a

chosen “search direction” (iterative process)

New solver: truncated Newton Method (TN)

● “step” closer to the solution in a chosen search direction (iteratively)
● Newton direction (d): ▽2J(xk) dk+1 = -▽J(xk)

○ solve iteratively with Conjugate Gradient
○ we don’t form ▽2J(xk) - just the matvec product

● step length in direction (d) determined by line search
○ linesearch = Moré-Thuente

● look at relative reduction in the gradient (more standard):
||▽J(x))|| / |▽J(x0))|| < 1e-4

Numerical solver

7

Cost breakdown: Supercell (20 iterations)

8

GPU enablement

● Utilized OpenACC parallel and data movement directives
● Very large working set size makes application ideal for GPU

execution
● All computationally demanding calculations are GPU resident
● Currently using managed memory
● Very small amount host → device memory transfers still exist
● Non-trivial rewrite of the calcHTranspose was necessary

9

Cost breakdown: [new HT op] (20 iterations)

10

Summary of SAMURAI code optimizations

Code version Platform
Execution time (minutes)

Supercell Hurricane

Original Intel Broadwell (2x18) 577 609

Serial + OpenMP opt Intel Broadwell (2x18) 151 382

TN solver Intel Broadwell (2x18) 46 74

new HT op
Intel Broadwell (2x18) 19 20

NVIDIA v100 5.4 4.9

Overall speedup (original CPU/ final GPU) 106 124

Conclusions
• Modernized and portable version of SAMURAI created
• Significant (106 - 124x) speedup achieved on SAMURAI
• Team with diverse and complementary skills can have profound

impact on application performance
• Possible to use full resolution of APAR instrument with CPU or

GPU based HPC resource
• HPC resources are no-longer needed for modest resolution

configurations
• Funding: NOAA grant through EOL

12

Team members
● Allison Baker (NCAR)
● Brian Dobbins (NCAR)
● Youngsung Kim (ORNL)
● Jian Sun (NCAR)

Collaborators
● Wen-chau Lee, APAR PI (NCAR)
● Scott Ellis (NCAR)
● Michael Bell (CSU)
● Ting-yu Cha (CSU)
● Alex DesRosiers (CSU)
● Michael Dixon (NCAR)

John Dennis (dennis@ucar.edu)

Questions?

Cost breakdown: Supercell (20 iterations)

14

Acknowledgements

• Funding: NOAA grant through EOL
• Team members

– Allison Baker (NCAR)
– Brian Dobbins (NCAR)
– Youngsung Kim (ORNL) formally NCAR

• Others
– Wen-chau Lee, APAR PI (NCAR)
– Scott Ellis (NCAR)
– Michael Bell (CSU)
– Ting-yu Cha (CSU)
– Alex DesRosiers (CSU)
– Michael Dixon (NCAR)
– Jian Sun (NCAR)

15

Conclusions

• Modernized and portable version of SAMURAI created
• Significant (106 - 124x) speedup achieved on SAMURAI
• Team with diverse and complementary skills can have profound

impact on application performance
• Possible to use full resolution of APAR instrument with CPU or

GPU based HPC resource
• HPC resources are no-longer needed for modest resolution

configurations
• GPU enablement allows SAMURAI to be used in-flight

– Potential to adjust science goals in real-time

16

Experimental configuration

• Computational platforms
– 2 x 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors
– 1 NVIDIA v100 32 GB

• Compilers:
– PGI 20.4
– Intel 19.0.5

• SAMURAI datasets
– Supercell:

• physical grid: 241x241x33
• # observations: 4.3M

– Hurricane
• physical grid: 105x201x33
• # observations: 8.7M

Future work

• Improve efficiency of GPU implementation
– Rewrite calcHTranpose again
– Eliminate all excessive PCIe traffic
– Improve memory access patterns on GPU

• I/O is serial and now a significant % of total execution time (40%)
• High resolution APAR data sets have very large memory

requirements
– Need multi-node CPU implementation
– Need multi-GPU implementation

18

Limited thread parallelism over physical grid

parallelized over varDim

#pragma omp parallel for
for (int var = 0; var < varDim; var++) {
 … temporary array allocations;
 for (int iIndex = 0; iIndex < iDim; iIndex++) {
 … } temporary array allocations;
 for (int kIndex = 0; kIndex < kDim; kIndex++) {
 … } temporary array allocations;
 for (int jIndex = 0; jIndex < jDim; jIndex++) {
 … }
}

parallelized over i, j, k grid dims

for (int var = 0; var < varDim; var++) {
 …
#pragma omp parallel for
 for (int iIndex = 0; iIndex < iDim; iIndex++) {
 temporary array allocations; … }
#pragma omp parallel for
 for (int kIndex = 0; kIndex < kDim; kIndex++) {
 temporary array allocations; … }
#pragma omp parallel for
 for (int jIndex = 0; jIndex < jDim; jIndex++) {
 temporary array allocations; … }
}

19

Issues with the HT operator: calcHtranpose

Original:

for(int m=0; m<mObs; ++m) {
 int mi = m*(7+varDim*derivDim)+1;
 const int begin = IH[m];
 const int end = IH[m + 1];
 for(int j=begin; j<end; ++j) {
 //#pragma omp atomic
 Astate[JH[j]] += H[j] * yhat[m] *
 obsVector[mi];
 }
 }

Second attempt:

#pragma omp parallel for
 for(int m=0; m<mObs; ++m) {
 real val = yhat[m] *
 obsVector[m*(7+varDim*derivDim)+1];
 for(int j=IH[m]; j<IH[m+1]; ++j) {
 tempHval[j] = H[j] * val;
 }
 }
 for(int i=0; i<IH[mObs]; ++i) {
 Astate[JH[i]] += tempHval[i];
 }

20

Cons: not threaded, indirect address
for store, non-unit access stride to
obsVector

Pros: partially threaded

Cons: indirect address for store,
non-unit access stride to obsVector,
would generate PCIe traffic for GPU

Issues with the HT operator: calcHtranpose (con’t)

#pragma omp parallel for
#pragma acc parallel loop gang vector
 for(int n=0;n<nState;n++){
 int ms = mPtr[n];
 int me = mPtr[n+1];
 real tmp = 0;
 if(me>ms){
 for (int k=ms;k<me;k++){
 int m=mVal[k];
 int j=I2H[k];
 real val = yhat[m] * obsData[m];
 tmp += H[j] * val;
 }
 }
 Astate[n]=tmp;
 }

Third attempt:

21

Pros: Fully threaded, eliminated
indirect address for store, unit
access stride for obsData, GPU
device resident.

Cons: suboptimal memory data
access patterns, uses a lot of
memory for address arrays
mPtr,mVal

Future activity, explicitly store
HT and do a standard CSR
format

Big Picture:

● minimize cost (objective) function: J(x)
● by solving for gradient: ▽J(x) = 0
● nonlinear optimization: at each iteration, “step” closer to the solution in a

chosen “search direction” (iterative process)

Old Samurai Solver:

● nonlinear Conjugate Gradient (NCG)
○ compute search direction (multiple options)
○ determine optimal step length

line search = Brent’s Method (expensive)
● convergence criteria:

● ~change in cost function between consecutive NCG steps < 1e-5
● harder to do a comparisons across as the reduction in the gradient

is not going to be the same in every case (problems/solvers)

Numerical solver

22

New solver: truncated Newton Method (TN)

● “step” closer to the solution in a chosen search direction (iteratively)
● Newton direction (d): ▽2J(xk) dk+1 = -▽J(xk)

○ solve iteratively with Conjugate Gradient
○ we don’t form ▽2J(xk) - just the matvec product

● step length in direction (d) determined by line search
○ linesearch = Moré-Thuente

● look at relative reduction in the gradient (more standard):
||▽J(x))|| / |▽J(x0))|| < 1e-4

Numerical solver (con’t)

23

Outline

• Background/Motivation
– APAR
– SAMURAI

• Initial state of code
• Code optimization
• Numerical solver
• GPU enablement
• Conclusions

Outline

• Background/Motivation
– APAR
– SAMURAI

• Initial state of code
• Code optimization
• Numerical solver
• GPU enablement
• Conclusions

Outline

• Background/Motivation
– APAR
– SAMURAI

• Initial state of code
• Code optimization
• Numerical solver
• GPU enablement
• Conclusions

Outline

• Background/Motivation
– APAR
– SAMURAI

• Initial state of code
• Code optimization
• Numerical solver
• GPU enablement
• Conclusions

Challenges

• Require a GUI C++ library for string manipulation (?)
• Execution only possible in a Docker container

– Not possible to use NCAR supercomputer environment due to
security restrictions

– performance analysis tools and SAMURAI incompatible
• Very long runtime: 2-3 days

– prevented execution in NCAR queueing system
– only possible to run on laptop or cloud provider

• Larger problems exceed memory of typical laptop

Porting of SAMURAI to HPC cluster

29

● Original version of code was a binary executable in a Docker container→
made development nearly impossible

● Removing Qt library dependency → C++11
● Redesign Cmake build structure

○ Support use of multiple compilers
○ Support use of standard performance analysis tools

● Significant effort: ~2 months

Now possible for for multiple team members to contribute to project!

How efficient is GPU implementation?
Roofline (supercell)

30

Lots of time spent running at HBM rates and/or PCIe traffic

Plan of attack

• Port Docker container version of SAMURAI to Charliecloud
• Port Charliecloud version to standard HPC cluster (Cheyenne)
• Analyze performance of SAMURAI
• Optimize code
• Evaluate replacing existing Conjugate Gradient solver
• Evaluate use of GPU using OpenACC

*Cost = 3D minimize() time **rel. norm = value of || ▽J(x)||/|| ▽2J(x0)|| at convergence

Solver on a variety of problems

Problem sizes cost* rel. norm** cost* rel. norm** Speedup

Supercell (241x241x33)
obs = 4372390

2.3 h 4.3e-4 23.4m 9.7e-5 5.9x

Supercell:
2x

(481x481x65)
obs = 17494182

13.4 h 1.3e-3 2.8 h 9.9e-5 4.8x

Hurricane (105x201x33)
obs = 8675128

6.6 h 4.5e-5 26.9 m 9.6e-5 14.7x

Hurricane:
2x

(211x401x65)
obs = 13471745

11.5 h 8.0e-5 1.3 h 9.6e-5 8.8x

Samurai NCG Truncated Newton
Timing results (Cheyenne)

32

