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Airborne Phased Array Radar (APAR)

Optimizing SAMURAI

● Airborne precipitation radar to replace retired ELDORA aircraft
● Science drivers

○ Hurricanes and tropical cyclones
○ Continental convection
○ Extreme precipitation events
○ Arctic studies 
○ Cloud, aerosol, and radiation studies 

Airborne Phased Array Radar (APAR),  Wen-Chau Lee, Vanda Grubisic, Lou Lussier, https://www.ofcm.gov/meetings/TCORF/ihc20/session_3/3-7_lee.pdf



Spline Analysis at Mesoscale Utilizing Radar and 
Aircraft Instrumentation (SAMURAI)

Bell et. al 2012

● Developed by M. Bell @ CSU
● Consumes Airborne observations doppler
● Generates variational analysis of seven variables [wind, precipitation, 

vorticity, etc]
● Variational analysis product can be used by NWP
● C++, OpenMP based parallelism



SAMURAI optimization effort

• Funded by Earth Observing Laboratory (EOL) through a NOAA grant
• Original version of SAMURAI takes 2-3 days to perform analysis (single 

node) for test datasets
• Anticipated APAR generate data ~16x larger 
• What can be done to accelerate the processing of observations?
• Is this application suitable for GPUs?

Goal: Run analysis in less than 6 hours



SAMURAI computational characteristics

• Matrix-free solver implemented by several operators
• Main data-structures

– 3D physical grid (eg: 241x241x33)
– Observation matrix H [can be quite large]

• Computational routines
– NCG or Truncated-Newton solver
– Pencil calculations on physical grid

• SAtransform
• SCtransform

– Multiply by H:  Htransform
– Multiply by HT: calcHTransform



SAMURAI performance issues

• Inefficient indexing and limited thread parallelism over physical grid
– SAtransform
– SCtransform

• Limited thread parallelism over HT operator
– calcHTranpose

• Non-unit stride for observation vector
– Htransform
– calcHTranpose

• Numerical inefficient Nonlinear Conjugate Gradient solver
• No threading within existing solver



Big Picture:

● minimize cost (objective) function:     J(x) 
● by solving for gradient:             ▽J(x) = 0 
● nonlinear optimization: at each iteration, “step” closer to the solution in a 

chosen “search direction” (iterative process)

New solver:  truncated Newton Method (TN)

● “step” closer to the solution in a chosen search direction (iteratively)
● Newton direction (d):   ▽2J(xk) dk+1 = -▽J(xk)  

○ solve iteratively with Conjugate Gradient
○ we don’t form ▽2J(xk) - just the matvec product

● step length in direction (d) determined by line search
○ linesearch = Moré-Thuente

● look at relative reduction in the gradient (more standard):
||▽J(x))|| / |▽J(x0))|| < 1e-4 

Numerical solver 
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Cost breakdown: Supercell  (20 iterations)
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GPU enablement

● Utilized OpenACC parallel and data movement directives
● Very large working set size makes application ideal for GPU 

execution
● All computationally demanding calculations are GPU resident
● Currently using managed memory
● Very small amount host → device memory transfers still exist
● Non-trivial rewrite of the calcHTranspose was necessary
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Cost breakdown: [new HT op]  (20 iterations)
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Summary of SAMURAI code optimizations

Code version Platform
Execution time (minutes)

Supercell Hurricane

Original Intel Broadwell (2x18) 577 609

Serial + OpenMP opt Intel Broadwell (2x18) 151 382

TN solver Intel Broadwell (2x18) 46 74

new HT op
Intel Broadwell (2x18) 19 20

NVIDIA v100 5.4 4.9

Overall speedup (original CPU/ final GPU) 106 124



Conclusions
• Modernized and portable version of SAMURAI created
• Significant (106 - 124x) speedup achieved on SAMURAI
• Team with diverse and complementary skills can have profound 

impact on application performance
• Possible to use full resolution of APAR instrument with CPU or 

GPU based HPC resource
• HPC resources are no-longer needed for modest resolution 

configurations
• Funding: NOAA grant through EOL
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Cost breakdown: Supercell  (20 iterations)
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Conclusions

• Modernized and portable version of SAMURAI created
• Significant (106 - 124x) speedup achieved on SAMURAI
• Team with diverse and complementary skills can have profound 

impact on application performance
• Possible to use full resolution of APAR instrument with CPU or 

GPU based HPC resource
• HPC resources are no-longer needed for modest resolution 

configurations
• GPU enablement allows SAMURAI to be used in-flight

– Potential to adjust science goals in real-time
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Experimental configuration

• Computational platforms
– 2 x 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors
– 1 NVIDIA v100 32 GB

• Compilers:
– PGI 20.4
– Intel 19.0.5

• SAMURAI datasets
– Supercell:

• physical grid: 241x241x33
• # observations: 4.3M

– Hurricane
• physical grid: 105x201x33
• # observations: 8.7M



Future work

• Improve efficiency of GPU implementation
– Rewrite calcHTranpose again 
– Eliminate all excessive PCIe traffic
– Improve memory access patterns on GPU

• I/O is serial and now a significant % of total execution time (40%)
• High resolution APAR data sets have very large memory 

requirements
– Need multi-node CPU implementation
– Need multi-GPU implementation
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Limited thread parallelism over physical grid

parallelized over varDim

#pragma omp parallel for
for (int var = 0; var < varDim; var++) {
   …  temporary array allocations;
  for (int iIndex = 0; iIndex < iDim; iIndex++) {
  … } temporary array allocations;
  for (int kIndex = 0; kIndex < kDim; kIndex++) {
  … } temporary array allocations;
  for (int jIndex = 0; jIndex < jDim; jIndex++) {
  … }
}

parallelized over i, j, k grid dims

for (int var = 0; var < varDim; var++) {
   …
#pragma omp parallel for
  for (int iIndex = 0; iIndex < iDim; iIndex++) {
  temporary array allocations; … }
#pragma omp parallel for
  for (int kIndex = 0; kIndex < kDim; kIndex++) {
  temporary array allocations; … }
#pragma omp parallel for
  for (int jIndex = 0; jIndex < jDim; jIndex++) {
  temporary array allocations; … }
}
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Issues with the  HT operator: calcHtranpose

Original:

for(int m=0; m<mObs; ++m) {
    int mi = m*(7+varDim*derivDim)+1;
    const int begin = IH[m];
    const int end = IH[m + 1];
    for(int j=begin; j<end; ++j) {
      //#pragma omp atomic
      Astate[JH[j]] += H[j] * yhat[m] *
                                obsVector[mi];
    }
  }

Second attempt:

#pragma omp parallel for
  for(int m=0; m<mObs; ++m) {
    real val = yhat[m] *
               obsVector[m*(7+varDim*derivDim)+1];
    for(int j=IH[m]; j<IH[m+1]; ++j) {
      tempHval[j] = H[j] * val;
    }
  }
  for(int i=0; i<IH[mObs]; ++i) {
      Astate[JH[i]] += tempHval[i];
  }
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Cons: not threaded, indirect address 
for store, non-unit access stride to 
obsVector

Pros: partially threaded

Cons:  indirect address for store, 
non-unit access stride to obsVector, 
would generate PCIe traffic for GPU



Issues with the  HT operator: calcHtranpose (con’t)

#pragma omp parallel for
#pragma acc parallel loop gang vector
 for(int n=0;n<nState;n++){
    int ms = mPtr[n]; 
    int me = mPtr[n+1];
    real tmp = 0;
    if(me>ms){
    for (int k=ms;k<me;k++){
         int m=mVal[k]; 
           int j=I2H[k];
         real val = yhat[m] * obsData[m];
         tmp += H[j] * val;
   }
     }
     Astate[n]=tmp;
  }

Third attempt:
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Pros: Fully threaded, eliminated 
indirect address for store, unit 
access stride for obsData, GPU 
device resident.

Cons: suboptimal memory data 
access patterns, uses a lot of 
memory for address arrays 
mPtr,mVal

Future activity, explicitly store 
HT and do a standard CSR 
format



Big Picture:

● minimize cost (objective) function:     J(x) 
● by solving for gradient:             ▽J(x) = 0 
● nonlinear optimization: at each iteration, “step” closer to the solution in a 

chosen “search direction” (iterative process)

Old Samurai Solver: 

● nonlinear Conjugate Gradient (NCG) 
○ compute search direction (multiple options)
○ determine optimal step length 

line search = Brent’s Method (expensive)
● convergence criteria:

● ~change in cost function between consecutive NCG steps  < 1e-5 
● harder to do a comparisons across as the reduction in the gradient 

is not going to be the same in every case (problems/solvers)

Numerical solver 
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New solver:  truncated Newton Method (TN)

● “step” closer to the solution in a chosen search direction (iteratively)
● Newton direction (d):   ▽2J(xk) dk+1 = -▽J(xk)  

○ solve iteratively with Conjugate Gradient
○ we don’t form ▽2J(xk) - just the matvec product

● step length in direction (d) determined by line search
○ linesearch = Moré-Thuente

● look at relative reduction in the gradient (more standard):
||▽J(x))|| / |▽J(x0))|| < 1e-4 

Numerical solver (con’t)
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Challenges

• Require a GUI C++ library for string manipulation (?)
• Execution only possible in a Docker container

– Not possible to use NCAR supercomputer environment due to 
security restrictions

– performance analysis tools and SAMURAI incompatible
• Very long runtime: 2-3 days

– prevented execution in NCAR queueing system
– only possible to run on laptop or cloud provider

• Larger problems exceed memory of typical laptop



Porting of SAMURAI to HPC cluster
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● Original version of code was a binary executable in a Docker container→ 
made development nearly impossible

● Removing Qt library dependency → C++11
● Redesign Cmake build structure

○ Support use of multiple compilers
○ Support use of standard performance analysis tools

● Significant effort: ~2 months

Now possible for for multiple team members to contribute to project!



How efficient is GPU implementation?
Roofline (supercell) 
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Lots of time spent running at HBM rates and/or PCIe traffic



Plan of attack

• Port Docker container version of SAMURAI to Charliecloud
• Port Charliecloud version to standard HPC cluster (Cheyenne)
• Analyze performance of SAMURAI
• Optimize code
• Evaluate replacing existing Conjugate Gradient solver
• Evaluate use of GPU using OpenACC



*Cost = 3D minimize() time          **rel. norm =  value of || ▽J(x)||/|| ▽2J(x0)|| at convergence

Solver on a variety of problems

Problem sizes cost* rel. norm** cost* rel. norm** Speedup

Supercell (241x241x33)
obs = 4372390

2.3 h 4.3e-4 23.4m 9.7e-5 5.9x

Supercell:
2x

(481x481x65)
obs = 17494182

13.4 h 1.3e-3 2.8 h 9.9e-5 4.8x

Hurricane (105x201x33)
obs = 8675128

6.6 h 4.5e-5 26.9 m 9.6e-5 14.7x

Hurricane:
2x

(211x401x65)
obs = 13471745

11.5 h 8.0e-5 1.3 h 9.6e-5 8.8x

Samurai NCG Truncated Newton
Timing results (Cheyenne)
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