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NeurIPS Conference Papers, 1987-2020



ML for Earth system modeling should incorporate:

• Physics and Domain Knowledge

• Robustness

• Interpretable ML and Explainable AI
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U-Net Architecture (training and validation: 1999-2015)
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(U-Net architecture based on 
Ronneberger et al. 2015)
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Skill of Week 3 Temperature Error Prediction (2016-2019)

Molina et al. (in prep.)

All Seasons (0.41) DJF (0.39) MAM (0.44)

JJA (0.44) SON (0.40)

Pearson Corr. HigherLower



Typical Workflow: (1) Data Preprocessing



Typical Workflow: (2) Machine Learning



Typical Workflow: (3) ML Evaluation
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