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the chemical data assimilation problem

Our goal is to combine observations and models
to improve our estimate of the state 

(constituents) of a system (atmosphere) .

from a Bayesian framework: 

(state given observations) (observations given state) (state)

[ x | Y ]                [ Y | x ]                [ x ]

(posterior)             (likelihood)         (prior)



the inverse problem

Our goal is to combine observations and models
to improve our estimate of the sources 

(of constituents) in the system (atmosphere) .

from a Bayesian framework: 

(source given observations of the state)

(observations given the source) (source)

[ x | Y ]        [ Y | x ]                [ x ]

(posterior)     (likelihood)         (prior)



our model of the system 

 

 

 

 

 

In the case of [CO]:

natural /anthropogenic 
combustion-related 

processes

estimate = M(state) + error
xt+1 = M ( xt ) + t with t ~ N(0,Q)

from a 4km WRF-Chem

North American Monsoon (NAM) Simulation 

(~July/Aug 2006)

P.I.s Mary Barth/Alma Hodzic

http://acd.ucar.edu/~barthm/namcase.html



In-Situ Measurements Remote-sensed Measurements

Source Inventories Fire Data

Ancillary Data

Aircraft Measurements

e.g. Terra MOPITT, Aura TES, Envisat SCIAMACHY, 
Aqua AIRS, Aura MLS, ACE FTS, Metop IASI

observations of the system 



observation and model

observation =  h(state) + error

Y = h (x) + with ~ N (0, R)

Y = Hx + linear case

In the case of direct observations of CO, H is simply a linear

interpolation of the model CO state to the observation

However, in the case of remote-sensed measurements of CO, H can
be more complicated (may not be non-linear too!). For example,

 

 

 

 

where h ( ) can be a radiative transfer model (RTM)

linear case where  is the measurement sensitivity

where  is the averaging 

kernel



observation and model 

observation =  h(source) + error

Y = h (x) + with ~ N (0, R)

Y = Hx + linear case

In the case of direct observations of CO, H is matrix of response

functions (mapping the source to the state) + a linear interpolation of

the model CO state to the observation

However, in the case of remote-sensed measurements of CO, H can
be more complicated (may not be non-linear too!). For example,

 

 

 

 

where h ( ) can be a radiative transfer model (RTM)

linear case where  is the measurement sensitivity

where  is the averaging 

kernel



the inverse problem

[ x | Y ]                [ Y | x ]             [ x ]

( posterior )          ( likelihood )      ( prior )

An estimate xa of the state can be expressed as:  

when Prior is N( xf, Pf ) and Y = Hx + with ~N(0,R), the posterior is N(xa,Pa)

 

 

 

least-squares shrink to Hxf

Kalman Filter

Can be recast as:

,     

 



inverse modeling of CO sources

e.g. [ emission | MOPITT ] [ MOPITT | emission ] [ emission ]

N(xa,Pa) N(Hx, R)                   N( xf, Pf ) 

We solve for regional source scaling factors

e.g.

Note that the posterior mean is sensitive to 

data, prior estimates, error specification and 

model leading to persistent discrepancies in 

source estimates 

(No TransCom framework for CO)



ensemble of inversions

Heald et al. (2004)

Sensitivity Tests of Error Assumptions and Obs Data Choice



Arellano et al. (2004)

ensemble of inversions

Sensitivity Tests of Error Assumptions and Obs Data Choice



Kopacz et al. (2009)

sensitivity to methodology 

Comparison between Adjoint and Analytical Solution



sensitivity to observing network

Hu et al. (2009)

Top-down Estimates of Black Carbon



sensitivity to GCTM transport

differences in inverse results differences in response functions

Arellano and Hess, (2006)

MOZART

NCEP

MOZART

ECMWF

GEOSChem

GEOS3



recent top-down estimates of CO sources

Kopacz et al., (2010)

annual estimates of scaling factors



recent top-down estimates of CO sources

Kopacz et al., (2010)



recent top-down estimates of CO sources

Kopacz et al., (2010)



problems?

Kopacz et al., (2010)

posterior CO still exhibit large biases



problems?

posterior CO still exhibit large biases

Arellano et al. (2006) Heald et al. (2004)



recommendations

1) Inversions with a regional focus

- reconciling differences in inverse results

- reducing aggregation errors

2) TransCom-like CO experiments

- understanding errors in GCTM

- elucidating differences in methodology 

(perfect model experiments)

3) Towards a more integrated/synergistic approach

- multi-species/multi-platform inversions

- state/source estimation 

4) Better error characterization

- observational errors (biases/inconsistencies)

- model errors

- emission errors



chemical data assimilation system @ NCAR



utility of a chemical DA system

capability to evaluate the forecast model

Forecast < y-Hxp >

Analysis < y-Hxu >

Analysis - Forecast < xu- xp >

RMSE relative to MOPITT
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MOPITT CO @ 700 hPa (April 2006)

model overpredicts
in source region 

while underpredicts
in downwind region

system diagnostic 
for short-term 
(6-hourly) 
forecast errors



error characterization using ensembles 

Temperature Spread @ 500 hPa

)

U Wind Spread @ 500 hPa (m/s)

CO Spread @ 500 hPa (ppbv) CO Emissions Spread (%)


