Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

On the DSM, the ppstest program is helpful for gaining an understanding of the system and GPS clocks. It displays the system clock value when the interrupt function is called at the time of the assertion and the clear of the PPS square pulsesignal. Do ctrl-C to terminate ppstest.

Code Block
root@manitou root# ppstest /dev/ttyS3
trying PPS source "/dev/ttyS3"
found PPS source #3 "serial3" on "/dev/ttyS3"
ok, found 1 source(s), now start fetching data...
source 0 - assert 1315494544.999995675, sequence: 37249847 - clear  1315494544.099998000, sequence: 37249862
source 0 - assert 1315494544.999995675, sequence: 37249847 - clear  1315494545.099995000, sequence: 37249863
source 0 - assert 1315494545.999994675, sequence: 37249848 - clear  1315494545.099995000, sequence: 37249863
source 0 - assert 1315494545.999994675, sequence: 37249848 - clear  1315494546.099993000, sequence: 37249864
source 0 - assert 1315494546.999994675, sequence: 37249849 - clear  1315494546.099993000, sequence: 37249864
ctrl-C

The above sequence shows that the GPS system clock is ahead of behind the system clockGPS. The system time when the interrupt function is being called on the PPS assert is 5 microseconds before each the exact second (1.0 - 0.999995). This corresponds to a NTPClockOffset of 5 microsecond, which is positive 5 microseconds. This ss confirmed with the ntpq program (which reports its offset in milliseconds):

Code Block
ntpd -p
root@manitou root# ntpq -p
     remote           refid      st t when poll reach   delay   offset  jitter
==============================================================================
xral             38.229.71.1      3 u   34   64  377    0.320    3.804   0.031
 LOCAL(0)        .LOCL.          10 l  93d   64    0    0.000    0.000   0.000
oGPS_NMEA(0)     .GPS.            2 l    6   16  377    0.000    0.005   0.031

The ntpq output indictes indicates (with the leading 'o') that NTP is using the GPS as the system's reference clock. It also displays the offset of the RAL server's clock of 3.804 milliseconds, and indicates with an 'x' that it is not using that clock as a reference. The RAL server uses NTP over a WIFI connection to adjust its clock, so it is not as accurate as the DSM.

...

Code Block
55812 54504.454 0.000005000 39.301 0.000030518 0.001408 4
55812 54520.455 0.000006000 39.302 0.000030518 0.001415 4
55812 54536.454 0.000005000 39.303 0.000030518 0.001392 4
55812 54552.454 0.000005000 39.305 0.000030518 0.001372 4

I do not believe I've seen a jitter value less than 31 microseconds. Not sure why that is. I believe the jitter is the standard deviation of the offset, but the NTP documentation is rather unclear to me.